Solveeit Logo

Question

Physics Question on work, energy and power

A particle is moving in translatory motion. If momentum of the particle decreases by 10%10\%, kinetic energy will decrease by

A

20%20\%

B

19%19\%

C

10%10\%

D

5%5\%

Answer

19%19\%

Explanation

Solution

According to question, Momentum of the particle decrease by 10%10 \% As we know, momentum of particle p=2mKp=\sqrt{2 m K} P=2mKP= \sqrt{2}{mK} pK\Rightarrow p \propto \sqrt{K} and p1K1p_{1} \propto \sqrt{K_{1}} Final momentum, p1=p10p100p_{1}=p-\frac{10 p}{100} Rightarrowp1=90p100Rightarrow p_{1}=\frac{90 p}{100} So, pp1=KK1\frac{p}{p_{1}}=\sqrt{\frac{K}{K_{1}}} (10090)2=KK1\Rightarrow\left(\frac{100}{90}\right)^{2}=\frac{K}{K_{1}} 100008100=KK1\Rightarrow \frac{10000}{8100}=\frac{K}{K_{1}} 81100=K1K\Rightarrow \frac{81}{100}=\frac{K_{1}}{K} Decreasing both sides from 1 , 181100=1K1K1-\frac{81}{100} =1-\frac{K_{1}}{K} 10081100=KK1K\Rightarrow \frac{100-81}{100} =\frac{K-K_{1}}{K} KK1K=19100\frac{K-K_{1}}{K} =\frac{19}{100} Change in kinetic energy (KK1K)×100=(19100)×100=19%\Rightarrow \left(\frac{K-K_{1}}{K}\right) \times 100=\left(\frac{19}{100}\right) \times 100=19 \%