Solveeit Logo

Question

Question: A particle is moving in a plane with velocity given by \(\overrightarrow{u}\)= u<sub>0</sub> \(\wide...

A particle is moving in a plane with velocity given by u\overrightarrow{u}= u0 i^\widehat{i} + (aωcosωt)j^\widehat{j}, where i^\widehat{i}and j^\widehat{j}are unit vectors along x and y axis, respectively. If the particle is at origin at t = 0, the distance from origin at time 3π/2 ωis

A

a2 + ω2

B

[(3πu0/2ω)2+a2]1/2\left\lbrack \left( 3\pi u_{0}/2\omega \right)^{2} + a^{2} \right\rbrack^{1/2}

C

a2+(2/3πu0)2\sqrt{a^{2} + \left( 2/3\pi u_{0} \right)^{2}}

D

a2+(πu0/ω)2\sqrt{a^{2} + \left( \pi u_{0}/\omega \right)^{2}}

Answer

[(3πu0/2ω)2+a2]1/2\left\lbrack \left( 3\pi u_{0}/2\omega \right)^{2} + a^{2} \right\rbrack^{1/2}

Explanation

Solution

Given, u = u0i^\widehat{i} + (aω cos ωt)j^\widehat{j}

Thus velocity along y axis, Uy = a cos ωt and velocity along x axis, vx = u0.

Displacement at time t in horizontal direction,

x = u0dt=u0t(Qv=dxdt)\int_{}^{}{u_{0}dt} = u_{0}t\left( Qv = \frac{dx}{dt} \right)

and y = aωcosωtdt=asinωt\int_{}^{}{a\omega\cos\omega tdt} = a\sin\omega t

Eliminating t, y = a sin (ωx/u0)

At time 3π/2ω, x = u0(3π/2ω)

and y = a sin 3π/2 = -a

Thus distance of particle from origin

S = [3πμ02ω]2+a2(QR=x2+y2)\sqrt{\left\lbrack \frac{3\pi\mu_{0}}{2\omega} \right\rbrack^{2} + a^{2}}\left( QR = \sqrt{x^{2} + y^{2}} \right)