Solveeit Logo

Question

Physics Question on work, energy and power

A particle is moving in a circular path of radius a under the action of an attractive potential U=k2r2U = - \frac{k}{2r^2}. Its total energy is -

A

k4a2 - \frac{k}{4a^2}

B

k2a2 \frac{k}{2a^2}

C

zero

D

32ka2- \frac{3}{2} \frac{k}{a^2}

Answer

zero

Explanation

Solution

F=dUdr[U=k2r2]F=\frac{-d U}{d r} \,\,\,\,\,\left[U=-\frac{k}{2 r^{2}}\right]
mv2r=kr3\frac{m v^{2}}{r}=\frac{k}{r^{3}} \,\,\,\,\, [This force provides necessary centripetal force]
mv2=kr2\Rightarrow m v^{2}=\frac{k}{r^{2}}
K.E=k2r2\Rightarrow K . E=\frac{k}{2 r^{2}}
P.E=k2r2\Rightarrow P . E=-\frac{k}{2 r^{2}}
Total energy == Zero