Solveeit Logo

Question

Question: A particle is moving in a circle of radius R in such a way that at any instant the a<sub>r</sub> and...

A particle is moving in a circle of radius R in such a way that at any instant the ar and at are equal. If the speed at t = 0 is v0, the time taken to complete the first revolution is

A

Rv0e2π\frac{R}{v_{0}}e^{- 2\pi}

B

v0R

C

Rv0\frac{R}{v_{0}}

D

Rv0(1e2π)\frac{R}{v_{0}}\left( 1 - e^{- 2\pi} \right)

Answer

Rv0(1e2π)\frac{R}{v_{0}}\left( 1 - e^{- 2\pi} \right)

Explanation

Solution

Given, ar = ar i.e., Rω2 = Rα i.e., Rω2 = Rdωdt\frac{d\omega}{dt} or

dωdt\frac{d\omega}{dt} = ω2 or dωω2\frac{d\omega}{\omega^{2}} = dt i.e., ω0ωdωω2\int_{\omega_{0}}^{\omega}\frac{d\omega}{\omega^{2}} = 01dt\int_{0}^{1}{dt}

i.e., ω = ω01ω0t\frac{\omega_{0}}{1 - \omega_{0^{t}}}

i.e., dθdt=ω01ω0t\frac{d\theta}{dt} = \frac{\omega_{0}}{1 - \omega_{0^{t}}}

i.e., dθ = (ω01ω0t)\left( \frac{\omega_{0}}{1 - \omega_{0^{t}}} \right)dt agins, 02πdθ=0T(ω01ω0t)\int_{0}^{2\pi}{d\theta} = \int_{0}^{T}\left( \frac{\omega_{0}}{1 - \omega_{0^{t}}} \right)

or (1 - ω0T) = e-2π or T = 1ω0\frac{1}{\omega_{0}} (1 – e-2π)

or T = Rv0\frac{R}{v_{0}} (1 – e-2π)