Solveeit Logo

Question

Question: A particle is kept fixed on a turntable rotating uniformly. As seen from the ground, the particle go...

A particle is kept fixed on a turntable rotating uniformly. As seen from the ground, the particle goes in the circle, its speed is 20cm/s20cm/s and acceleration is 20cm/s220cm/{{s}^{2}}. The particle is shifted to a new position to make the radius half of the original value. The new values of the speed and the acceleration will be:
A) 10cm/s,10cm/s210cm/s,10cm/{{s}^{2}}
B) 10cm/s,80cm/s210cm/s,80cm/{{s}^{2}}
C) 40cm/s,10cm/s240cm/s,10cm/{{s}^{2}}
D) 40cm/s,40cm/s240cm/s,40cm/{{s}^{2}}

Explanation

Solution

Hint: Since, there is no effect on the rotation of the turntable and it is unchanged, the angular frequency (ω)\left( \omega \right) does not change. The velocity depends directly on the angular velocity and radius of the particle. The acceleration depends on the angular velocity squared and the radius.

Formula used:
 velocity (v) = Angular velocity(ω)×Radius(R)\text{ velocity }\left( v \right)\text{ = Angular velocity}\left( \omega \right)\times \text{Radius}\left( R \right)
v=ωR\therefore v=\omega R
vR\therefore v\propto R
 acceleration (a)=(Angular velocity)2×Radius(R)\text{ acceleration }\left( a \right)={{\left( \text{Angular velocity} \right)}^{2}}\times \text{Radius}\left( R \right)
a=ω2R\therefore a={{\omega }^{2}}R
aR2\therefore a\propto {{R}^{2}}

Complete step-by-step answer:

Let us first analyse the information given to us.
The initial velocity (v1)=20cm/s\left( {{v}_{1}} \right)=20cm/s --(1)
The initial acceleration (a1)=20cm/s2\left( {{a}_{1}} \right)=20cm/{{s}^{2}} --(2)
The initial radius of the particle is RR --(3)

After the position of the particle is changed such that the radius is halved.
The final velocity is v2{{v}_{2}} --(4)
The final acceleration is a2{{a}_{2}} --(5)
Final radius is R2\dfrac{R}{2} ---(6)
Now, since there is no change in the rotation of the turntable and there is no effect on it, the angular frequency (ω)\left( \omega \right) remains the same.
The velocity depends directly on the angular velocity and radius of the particle. The acceleration depends on the angular velocity squared and the radius.
 velocity (v) = Angular velocity(ω)×Radius(R)\text{ velocity }\left( v \right)\text{ = Angular velocity}\left( \omega \right)\times \text{Radius}\left( R \right)
v=ωR\Rightarrow v=\omega R
vR\Rightarrow v\propto R --(7)
 acceleration (a)=(Angular velocity)2×Radius(R)\text{ acceleration }\left( a \right)={{\left( \text{Angular velocity} \right)}^{2}}\times \text{Radius}\left( R \right)
a=ω2R\Rightarrow a={{\omega }^{2}}R
aR\Rightarrow a\propto R --(8)
Using (7), we get
v2v1=R2R=12\dfrac{{{v}_{2}}}{{{v}_{1}}}=\dfrac{\dfrac{R}{2}}{R}=\dfrac{1}{2}
v2=v12=202=10cm/s\Rightarrow {{v}_{2}}=\dfrac{{{v}_{1}}}{2}=\dfrac{20}{2}=10cm/s
Hence, the new velocity is 10cm.s110cm.{{s}^{-1}}.
Using (8) we get,
a2a1=(R2)R=R2R=12\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{\left( \dfrac{R}{2} \right)}{{{R}^{{}}}}=\dfrac{\dfrac{{{R}^{{}}}}{2}}{{{R}^{{}}}}=\dfrac{1}{2}

a2=a12=202=10cm/s2\therefore {{a}_{2}}=\dfrac{{{a}_{1}}}{2}=\dfrac{20}{2}=10cm/{{s}^{2}}
Hence, the new acceleration is 10cm/s210cm/{{s}^{2}}
Therefore, the correct option is A) 10cm/s,10cm/s210cm/s,10cm/{{s}^{2}}.

Note: Students must keep in mind that the angular velocity (or angular frequency of the particle does not change. It can only change if there is a change in the speed of rotation of the turntable itself. Students often get confused at this point and commit silly mistakes.