Solveeit Logo

Question

Physics Question on Oscillations

A particle is executing SHM along a straight line. It velocities at distances x1x_1 and x2x_2 mean position are V1V_1 and V2V_2, respecilvely. Its time period is :

A

2πV12+V22x12+x222 \pi \sqrt{\frac{V_1^2 + V_2^2}{x_1^2 + x_2^2}}

B

2πV12V22x12x222 \pi \sqrt{\frac{V_1^2 - V_2^2}{x_1^2 - x_2^2}}

C

2πx12+x22V12+V222 \pi \sqrt{\frac{x_1^2 + x_2^2}{V_1^2 + V_2^2}}

D

2πx22x12V12V222 \pi \sqrt{\frac{x_2^2 - x_1^2}{V_1^2 - V_2^2}}

Answer

2πx22x12V12V222 \pi \sqrt{\frac{x_2^2 - x_1^2}{V_1^2 - V_2^2}}

Explanation

Solution

For particle undergoing SHM
V=ωA2X2{V = \omega \sqrt{A^2 - X^2}}
so {V_1 = \omega \sqrt{A^2 - x^2_}} & V_2 = ωA2x22\omega \sqrt{ A ^2 - x^2_2}
solving these two equation we get
ω=V12V22x22x12=2πT\omega = \sqrt{\frac{V^2_1 -V^2_2}{x^2_2 - x^2_1}}= \frac{2\pi}{T}
T=2πx22x12V12V22\Rightarrow T = 2\pi \sqrt{\frac{x^2_2 -x^2_1}{V^2_1 -V^2_2}}.