Solveeit Logo

Question

Question: A particle in uniformly accelerated motion travels a, b and c distances in xth, yth, and zth second ...

A particle in uniformly accelerated motion travels a, b and c distances in xth, yth, and zth second of its motion, respectively. Then a(y - z) + b(z - x) + c (x - y) =

A

1

B

0

C

2

D

3

Answer

0

Explanation

Solution

Using Sn + u + a2\frac{a}{2} (2n - 1) we get

a = u + a2\frac{a'}{2} (2x - 1) …………… (i)

[d = uniform acceleration]

b = u + a2\frac{a'}{2} (2y - 1)…………… (ii)

c = u + a2\frac{a'}{2} (2z - 1) …………… (iii)

or a = dx + (ua2)\left( u - \frac{a'}{2} \right)…………….. (iv)

From (iv) ay = dxy + (ua2)\left( u - \frac{a'}{2} \right)y

and az = dxy + (ua2)\left( u - \frac{a'}{2} \right)z

Subtracting, a(y - z)

= d(xy - xz) + (ua2)\left( u - \frac{a'}{2} \right) (y - z)

Similarly, b(z - x)

= a'(yz – yx) + (ua2)\left( u - \frac{a'}{2} \right) (x - y)

and c(x - y) = d(zx - yz) + (ua2)\left( u - \frac{a'}{2} \right) (x - y)

Adding above 3 equations

a(y - z) + b(z - x) + c(x - y)

= a'(xy – xz + yz – yx + xz - yz) + (ua2)\left( u - \frac{a'}{2} \right)

(y – z + z – x + x - y) = 0