Solveeit Logo

Question

Physics Question on work, energy and power

A particle in a certain conservative force field has a potential energy given by V=20xyzV = \frac{20xy}{z}. The force exerted on it is

A

(20yz)i^+(20xz)j^+(20xyz2)k^\left(\frac{20y}{z}\right)\hat{i}+\left(\frac{20x}{z}\right)\hat{j}+\left(\frac{20xy}{z^{2}}\right)\hat{k}

B

(20yz)i^(20xz)j^+(20xyz2)k^-\left(\frac{20y}{z}\right)\hat{i}-\left(\frac{20x}{z}\right)\hat{j}+\left(\frac{20xy}{z^{2}}\right)\hat{k}

C

(20yz)i^(20xz)j^(20xyz2)k^-\left(\frac{20y}{z}\right)\hat{i}-\left(\frac{20x}{z}\right)\hat{j}-\left(\frac{20xy}{z^{2}}\right)\hat{k}

D

(20yz)i^+(20xz)j^(20xyz2)k^\left(\frac{20y}{z}\right)\hat{i}+\left(\frac{20x}{z}\right)\hat{j}-\left(\frac{20xy}{z^{2}}\right)\hat{k}

Answer

(20yz)i^(20xz)j^+(20xyz2)k^-\left(\frac{20y}{z}\right)\hat{i}-\left(\frac{20x}{z}\right)\hat{j}+\left(\frac{20xy}{z^{2}}\right)\hat{k}

Explanation

Solution

Given : V=20xyzV=\frac{20 x y}{z}
For a conservative field
F=V;\vec{F}=-\vec{\nabla} V ; where, =i^x+j^y+k^z\vec{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}
F=[i^Vx+j^Vy+k^Vz]\therefore \vec{F}=\left[\hat{i} \frac{\partial V}{\partial x}+\hat{j} \frac{\partial V}{\partial y}+\hat{k} \frac{\partial V}{\partial z}\right]
=[i^x(20xyz)+j^y(20xyz)+k^z(20xyz)]=-\left[\hat{i} \frac{\partial}{\partial x}\left(\frac{20 x y}{z}\right)+\hat{j} \frac{\partial}{\partial y}\left(\frac{20 x y}{z}\right)+\hat{k} \frac{\partial}{\partial z}\left(\frac{20 x y}{z}\right)\right]
=(20yz)i^(20xz)j^+(20xyz2)k^=-\left(\frac{20 y}{z}\right) \hat{i}-\left(\frac{20 x}{z}\right) \hat{j}+\left(\frac{20 x y}{z^{2}}\right) \hat{k}