Solveeit Logo

Question

Question: A particle has an initial velocity of \( {\mathbf{3}}\widehat {\mathbf{i}} + {\mathbf{4}}\widehat {\...

A particle has an initial velocity of 3i^+4j^{\mathbf{3}}\widehat {\mathbf{i}} + {\mathbf{4}}\widehat {\mathbf{j}} and an acceleration 0.4i^+0.3j^{\mathbf{0}}.{\mathbf{4}}\widehat {\mathbf{i}} + {\mathbf{0}}.{\mathbf{3}}\widehat {\mathbf{j}} . Its speed after 10 s{\text{10 s}} is:
(A) 10 units{\text{10 units}}
(B) 72 units{\text{7}}\sqrt 2 {\text{ units}}
(C) 7 units7{\text{ units}}
(D) 8.5 units{\text{8}}{\text{.5 units}}

Explanation

Solution

Hint : The three equations of motion for an object with constant acceleration give us relationships between the initial velocity u\overrightarrow {\mathbf{u}} , velocity v\overrightarrow {\mathbf{v}} at a time t{\mathbf{t}} , constant acceleration a\overrightarrow {\mathbf{a}} and the distance traveled by the body s{\mathbf{s}} .
We have Newton’s first equation given by,
v=u+at\overrightarrow {\mathbf{v}} = \overrightarrow {\mathbf{u}} + \overrightarrow {\mathbf{a}} {\mathbf{t}}
where, u\overrightarrow {\mathbf{u}} is the initial velocity of the body, a\overrightarrow {\mathbf{a}} is the constant acceleration of the body and v\overrightarrow {\mathbf{v}} is the velocity of the particle at a particular time t{\mathbf{t}} .

Complete Step By Step Answer:
Here, the initial velocity u=3i^+4j^\overrightarrow {\mathbf{u}} = {\mathbf{3}}\widehat {\mathbf{i}} + {\mathbf{4}}\widehat {\mathbf{j}} and acceleration a=0.4i^+0.3j^\overrightarrow {\mathbf{a}} = {\mathbf{0}}.{\mathbf{4}}\widehat {\mathbf{i}} + {\mathbf{0}}.{\mathbf{3}}\widehat {\mathbf{j}} . We need to find the velocity v\overrightarrow {\mathbf{v}} at time t=10s{\mathbf{t}} = 10s .
Using the first equation of motion we have,
v=(3i^+4j^)+(0.4i^+0.3j^)×10\overrightarrow {\mathbf{v}} = ({\mathbf{3}}\widehat {\mathbf{i}} + {\mathbf{4}}\widehat {\mathbf{j}}) + ({\mathbf{0}}.{\mathbf{4}}\widehat {\mathbf{i}} + {\mathbf{0}}.{\mathbf{3}}\widehat {\mathbf{j}}) \times 10
v=3i^+4j^+4i^+3j^\Rightarrow \overrightarrow {\mathbf{v}} = {\mathbf{3}}\widehat {\mathbf{i}} + {\mathbf{4}}\widehat {\mathbf{j}} + {\mathbf{4}}\widehat {\mathbf{i}} + {\mathbf{3}}\widehat {\mathbf{j}}
v=7i^+7j^\Rightarrow \overrightarrow {\mathbf{v}} = {\mathbf{7}}\widehat {\mathbf{i}} + {\mathbf{7}}\widehat {\mathbf{j}}
Now, the speed of the body is equal to the magnitude of the velocity v\overrightarrow {\mathbf{v}} .
So, the speed after 10s10s is ,
v=72+72v = \sqrt {{7^2} + {7^2}}
v=49+49\Rightarrow v = \sqrt {49 + 49}
v=98=72\Rightarrow v = \sqrt {98} = 7\sqrt 2
So, the speed of the particle after 10s10s is 727\sqrt 2 .
Therefore, the answer is option B. 72 units{\text{7}}\sqrt 2 {\text{ units}}

Additional Information:
Initial velocity is the velocity at which the particle starts to move, that is the velocity at t=0s{\mathbf{t}} = 0{\text{s}} . The speed of the particle is the magnitude of the velocity v\overrightarrow {\mathbf{v}} , which is given as a2+b2+c2\sqrt {{a^2} + {b^2} + {c^2}} for a vector v=ai^+bj^+ck^\overrightarrow {\mathbf{v}} = a\widehat {\mathbf{i}} + b\widehat {\mathbf{j}} + c\widehat {\mathbf{k}} .
The three equations of motion are, (i) v=u+at(i){\text{ }}\overrightarrow {\mathbf{v}} = \overrightarrow {\mathbf{u}} + \overrightarrow {\mathbf{a}} {\mathbf{t}} , (ii) s=ut+12at2(ii){\text{ }}\overrightarrow {\mathbf{s}} = \overrightarrow {\mathbf{u}} {\mathbf{t}} + \dfrac{1}{2}\overrightarrow {\mathbf{a}} {{\mathbf{t}}^2} and (iii) 2a.s=v.vu.u(iii){\text{ }}2\overrightarrow {\mathbf{a}} .\overrightarrow {\mathbf{s}} = \overrightarrow {\mathbf{v}} .\overrightarrow {\mathbf{v}} - \overrightarrow {\mathbf{u}} .\overrightarrow {\mathbf{u}} . They are used to characterize a physical system's action in terms of its motion as a function of time.

Note :
Using the first equation here, will be less time-consuming, than using the other two equations. When the body accelerates, use the +ve+ ve sign, and when the body decelerates, use the ve- ve sign for acceleration.