Solveeit Logo

Question

Question: A particle executing SHM with time period T and amplitude A. The mean velocity of the particle avera...

A particle executing SHM with time period T and amplitude A. The mean velocity of the particle averaged over quarter oscillation is

A

A4T\frac{A}{\text{4T}}

B

2AT\frac{\text{2A}}{T}

C

3AT\frac{\text{3A}}{T}

D

4AT\frac{\text{4A}}{T}

Answer

4AT\frac{\text{4A}}{T}

Explanation

Solution

Let the displacement of the particle executing SHM at any instant t is

x=Asinωtx = A\sin\omega t

Velocity v=dxdt=ddtAsinωt=Aωcosωtv = \frac{dx}{dt} = \frac{d}{dt}A\sin\omega t = A\omega\cos\omega t

The mean velocity of the particle averaged over quarter oscillation is

<v>0T/4=0T/4vdt0T/4dt=0T/4AωcosωtdtT/4< v >_{0 \rightarrow T/4} = \frac{\int_{0}^{T/4}{vdt}}{\int_{0}^{T/4}{dt}} = \frac{\int_{0}^{T/4}{A\omega\cos\omega tdt}}{T/4}

Aωω[sinωt]0T/4T/4=A[sinωt]0T/0T/4=4AT\frac{\frac{A\omega}{\omega}\lbrack\sin\omega t\rbrack_{0}^{T/4}}{T/4} = \frac{A\lbrack\sin\omega t\rbrack_{0}^{T/0}}{T/4} = \frac{4A}{T}