Solveeit Logo

Question

Question: A particle executing SHM. The phase difference between acceleration and displacement is...

A particle executing SHM. The phase difference between acceleration and displacement is

A

0

B

π2\frac{\pi}{2}

C

π\pi

D

32π\frac{3}{2}\pi

Answer

π\pi

Explanation

Solution

Let the displacement of a particle executing simple harmonic motion at any instant t is

x=Acosωtx = A\cos\omega t

Velocity v=dxdt=ddt(Acosωt)=Aωsinωtv = \frac{dx}{dt} = \frac{d}{dt}(A\cos\omega t) = - A\omega\sin\omega t

Acceleration, a=dvdt=Aω2cosωt=Aω2cos(ωt+π)a = \frac{dv}{dt} = - A\omega^{2}\cos\omega t = A\omega^{2}\cos(\omega t + \pi)

Phase of displacement φ1=ωt\varphi_{1} = \omega t

Phase of acceleration φ2=ωt+π\varphi_{2} = \omega t + \pi

\therefore Phase difference φ2φ1=(ωt+π)ωt=π\varphi_{2} - \varphi_{1} = (\omega t + \pi) - \omega t = \pi