Solveeit Logo

Question

Physics Question on Oscillations

A particle executing SHMSHM is described by the displacement function x(t)=Acos(ωt+ϕ)x(t) = A cos(\omega t + \phi), If the initial (t=0)(t = 0) position of the particle is 1cm1\, cm, its initial velocity is πcms1\pi \,cm \,s^{-1} and its angular frequency is πs1\pi \,s^{-1}, then the amplitude of its motion is

A

πcm\pi\,cm

B

2cm2 \,cm

C

2cm \sqrt2 \,cm

D

1cm1\,cm

Answer

2cm \sqrt2 \,cm

Explanation

Solution

x=Acos(ωt+ϕ)x= A cos \left(\omega t +\phi\right) where AA is amplitude. At t=0,x=1cmt=0, x= 1 \,cm 1=Acosϕ...(i)\therefore 1 = A \,cos \phi \quad...\left(i\right) Velocity, v=dxdt=ddt(Acos(ωt+ϕ))=Aωsin(ωt+ϕ)v= \frac{dx}{dt} = \frac{d}{dt}\left(A \,cos \left(\omega t+\phi\right)\right) = - A\omega sin \left(\omega t +\phi\right) At t=0,v=πcms1t = 0, v = \pi\, cm \,s^{-1} π=Aωsinϕ\therefore\pi = -A \omega sin \phi or πω=Asinϕ\frac{\pi}{\omega} = -A \,sin \phi ω=πs1\because\omega = \pi s^{-1} 1=Asinϕ...(ii)\therefore 1 = -A\, sin \phi\quad...\left(ii\right) Squaring and adding (i)\left(i\right) and (ii)\left(ii\right), we get A2cos2ϕ+A2sin2ϕ=2A^{2} cos^{2}\phi +A^{2} sin^{2} \phi = 2 A2=2(sin2ϕ+cos2ϕ=1)A^{2} = 2 \quad\left(\because sin ^{2} \phi + cos^{2}\phi = 1\right) A=2cm \therefore A= \sqrt{2} cm