Solveeit Logo

Question

Physics Question on Oscillations

A particle executing SHM has a maximum speed of 30cms130\, cm\, s^{-1} and a maximum acceleration of 60cms260 \,cm \,s^{-2}. The period of oscillation is

A

πs\pi\,s

B

π2s\frac{\pi}{2}s

C

2πs2\pi\,s

D

πts\frac{\pi}{t}s

Answer

πs\pi\,s

Explanation

Solution

Maximum speed, vmax=ωA...(i)v_{\text{max}} = \omega A\quad ...(i) Maximum accelaration, amax=ω2A...(ii)a_{\text{max}} = \omega^2 A \quad ...(ii) Divide (ii)(ii) by (i)(i), we get amaxvmax=ω2AωA=ω\frac{a_{max}}{v_{max}} = \frac{\omega^{2}A}{\omega A} = \omega amaxvmax=2πT,\therefore \frac{a_{max}}{v_{max }} = \frac{2\pi}{T} , T=2π(vmaxamax)T = 2\pi \left(\frac{v_{max}}{a_{max}}\right) Here, vmax=30cms1,v_{max} = 30 \, cm \,s^{-1}, amax=60cms2a_{max} = 60 \, cm \,s^{-2} T=2π(30cms160cms2)\therefore T =2\pi\left(\frac{30 \,cm \, s^{-1}}{60 \, cm \,s^{-2}}\right) =πs= \pi s