Solveeit Logo

Question

Question: A particle executing SHM according to the equation x = 5 cos \(\left( 2\pi t + \frac{\pi}{4} \right)...

A particle executing SHM according to the equation x = 5 cos (2πt+π4)\left( 2\pi t + \frac{\pi}{4} \right) in SI units. The displacement and acceleration of the particle at t = 1.5 s is

A

–3.0 m, 100 m s–2

B

+2.54 m, 200 m s–2

C

–3.54 m, 140 m s–2

D

+3.55 m, 120 m s–2

Answer

–3.54 m, 140 m s–2

Explanation

Solution

The given equation of simple harmonic motion is

x(t)=5cos(2πt+π4)x(t) = 5\cos\left( 2\pi t + \frac{\pi}{4} \right)

Compare the given equation with standard equation of SHM

x(t)=Acos(ωt+φ)x(t) = A\cos(\omega t + \varphi)

We get

ω=2πs1\omega = 2\pi s^{- 1}

At t=1.5st = 1.5s

Displacement x(t)=5cos(2π×1.5+π4)x(t) = 5\cos\left( 2\pi \times 1.5 + \frac{\pi}{4} \right)

=5cos(3π+π4)=5cos(π4)= 5\cos\left( 3\pi + \frac{\pi}{4} \right) = - 5\cos\left( \frac{\pi}{4} \right)

=[cos(3π+θ)=cosθ]= \lbrack\because\cos(3\pi + \theta) = - \cos\theta\rbrack

=5×0.707m=3.54m= - 5 \times 0.707m = - 3.54m

Acceleration a=ω2×a = - \omega^{2} \timesdisplacement

=(2πs1)2×(3.54m)=140ms2= - (2\pi s^{- 1})^{2} \times ( - 3.54m) = 140ms^{- 2}