Solveeit Logo

Question

Physics Question on simple harmonic motion

A particle executes simple harmonic oscillation with an amplitude a'a'. The period of oscillation is T'T'. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is

A

T4\frac{ T }{4}

B

T8\frac{ T }{8}

C

T12\frac{ T }{12}

D

T2\frac{ T }{2}

Answer

T12\frac{ T }{12}

Explanation

Solution

Let displacement equation of particle executing SHM is y=asinωty=a \sin \omega t As particle travels half of the amplitude from the equilibrium position, so y=a2y=\frac{a}{2} Therefore, a2=asinωt\frac{a}{2}=a \sin \omega t or sinωt=12=sinπ6\sin \omega t=\frac{1}{2}=\sin \frac{\pi}{6} or ωt=π6\omega t=\frac{\pi}{6} or t=π6ωt=\frac{\pi}{6 \omega} or t=π6(2πT)(t= \frac{\pi}{6(\frac{2\pi}{T})}\left(\right. as ω=2πT)\left.\omega=\frac{2 \pi}{T}\right) or t=T12t=\frac{T}{12} Hence, the particle travels half of the amplitude from the equilibrium in T12s\frac{T}{12} s.