Solveeit Logo

Question

Physics Question on simple harmonic motion

A particle executes simple harmonic oscillation with an amplitude aa. The period of oscillation is TT. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is

A

T4\frac{T}{4}

B

T8\frac{T}{8}

C

T12\frac{T}{12}

D

T2\frac{T}{2}

Answer

T12\frac{T}{12}

Explanation

Solution

In simple harmonic motion, the displacement x(t)x(t) of a particle from equilibrium position at any time tt is given by x(t)=asinωtx(t)=a\,sin\,\omega\,t where a is the amplitude At x(t)=a2x(t)=\frac{a}{2} a2=asinωt\frac{a}{2}=a\,sin\,\omega\,t or 12=sinωt\frac{1}{2}=sin\,\omega\,t or sin30=sinωtsin\,30^{\circ}=sin\omega \,t or sin(π6)=sinωtsin\left(\frac{\pi}{6}\right)=sin\,\omega t π6=2πTt(ω=2πT\frac{\pi}{6}=\frac{2\pi}{T} t (\because \omega=\frac{2\pi}{T}, where T is the time perood of oscillation) or t=T12t=\frac{T}{12}