Solveeit Logo

Question

Physics Question on Oscillations

A particle executes simple harmonic oscillation with an amplitude aa. The period of oscillation is TT . The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is

A

T4\frac{T}{4}

B

T8\frac{T}{8}

C

T12\frac{T}{12}

D

T2\frac{T}{2}

Answer

T12\frac{T}{12}

Explanation

Solution

Let displacement equation of particle executing SHM is
y=asinωty=a \sin \omega t
As particle travels half of the amplitude from the equilibrium position, so
y=a2y=\frac{a}{2}
Therefore, a2=asinωt\frac{a}{2}=a \sin \omega t
or sinωt=12=sinπ6\sin \omega t =\frac{1}{2}=\sin \frac{\pi}{6}
or ωt=π6\omega t =\frac{\pi}{6}
or t=π6ωt =\frac{\pi}{6 \omega}
or t=π6(2πT)(asω=2πT)t=\frac{\pi}{6\left(\frac{2 \pi}{T}\right)} \left(as \omega=\frac{2 \pi}{T}\right)
or t=T12t=\frac{T}{12}
Hence, the particle travels half of the amplitude from the equilibrium in T12s\frac{T}{12} s.