Solveeit Logo

Question

Question: A particle executes simple harmonic motion of amplitude \(A\). At what distance from the mean positi...

A particle executes simple harmonic motion of amplitude AA. At what distance from the mean position is its Kinetic Energy equal to its potential energy?
(A)0.81A\left( A \right)\,0.81\,A
(B)0.71A\left( B \right)\,0.71\,A
(C)0.41A\left( C \right)\,0.41\,A
(D)0.91A\left( D \right)\,0.91\,A

Explanation

Solution

Here we have to use a simple harmonic distance formula where the amplitude of the simple harmonic motion is AA. With the help of this distance we can calculate velocity of the particle and as given in the problem we equate kinetic energy with potential energy. Then with the help of distance and velocity we can calculate the mean position.

Complete step by step solution:
Distance from position XX
X=AsinωtX = A\sin \omega t
Kinetic Energy KEKE
KE=12mv2KE = \dfrac{1}{2}m{v^2}
Potential Energy PEPE
PE=12KX2PE = \dfrac{1}{2}K{X^2}
(whereK=m2ω2K = {m^2}{\omega ^2})
As per the given problem,
A particle executes simple harmonic motion of the amplitude AA.
And we know that
Distance from position can be represented as
X=Asinωt(1)X = A\sin \omega t \cdot \cdot \cdot \cdot \left( 1 \right)
Now we need to know the velocity of the particle,
Differentiating equation (1)\left( 1 \right) wrt to tt, we get,
dXdt=dAsinωtdt(2)\dfrac{{dX}}{{dt}} = \dfrac{{dA\sin \omega t}}{{dt}} \cdot \cdot \cdot \cdot \left( 2 \right)
Velocity of a particle V will be,
V=Change in distanceChange in timeV = \dfrac{{\text{Change in distance}}}{{\text{Change in time}}}
V=dXdt\Rightarrow V = \dfrac{{dX}}{{dt}}
Now, equation (2)\left( 2 \right) will become
V=Aωcosωt(3)V = A\omega \cos \omega t \cdot \cdot \cdot \cdot \left( 3 \right)
We know
KE=12mv2(4)KE = \dfrac{1}{2}m{v^2} \cdot \cdot \cdot \cdot \left( 4 \right)
Putting equation (3)\left( 3 \right)in(4)\left( 4 \right), we get
KE=12m(Aωcosωt)2KE = \dfrac{1}{2}m{\left( {A\omega \cos \omega t} \right)^2}
KE=12mA2ω2cos2ωt(5)\Rightarrow KE = \dfrac{1}{2}m{A^2}{\omega ^2}{\cos ^2}\omega t \cdot \cdot \cdot \cdot \left( 5 \right)
Now we know,
PE=12KX2PE = \dfrac{1}{2}K{X^2}
PE=12mω2X2(6)\Rightarrow PE = \dfrac{1}{2}m{\omega ^2}{X^2} \cdot \cdot \cdot \cdot \left( 6 \right)
Putting equation (1)\left( 1 \right) in (6)\left( 6 \right), we get
PE=12mω2(Asinωt)2PE = \dfrac{1}{2}m{\omega ^2}{\left( {A\sin \omega t} \right)^2}
PE=12mω2A2sin2ωt(7)\Rightarrow PE = \dfrac{1}{2}m{\omega ^2}{A^2}{\sin ^2}\omega t \cdot \cdot \cdot \cdot \left( 7 \right)
According to the question,
KE=PE(8)KE = PE \cdot \cdot \cdot \cdot \left( 8 \right)
Putting equation (5)\left( 5 \right)and(6)\left( 6 \right)respectively in equation(8)\left( 8 \right), we get
12mω2A2cos2ωt=12mω2A2sin2ωt\dfrac{1}{2}m{\omega ^2}{A^2}{\cos ^2}\omega t = \dfrac{1}{2}m{\omega ^2}{A^2}{\sin ^2}\omega t
Cancelling the common terms we get,
sin2ωt=cos2ωt{\sin ^2}\omega t = {\cos ^2}\omega t
tan2ωt=1\Rightarrow {\tan ^2}\omega t = 1
tanωt=1\Rightarrow \tan \omega t = 1
ωt=tan11\Rightarrow \omega t = {\tan ^{ - 1}}1
ωt=π4\Rightarrow \omega t = \dfrac{\pi }{4}
Now we have to calculate the mean position using the distance formula of simple harmonic motion
X=AsinωtX = A\sin \omega t
Now in place of ωt\omega t we will put π4\dfrac{\pi }{4},
Hence,
X=A×sinπ4X = A \times \sin \dfrac{\pi }{4}
X=A×12\Rightarrow X = A \times \dfrac{1}{{\sqrt 2 }}
X=0.71A\Rightarrow X = 0.71A
Therefore the correct option is (B)\left( B \right).

Note: We do not get the kinetic energy directly as we don’t know the velocity of the particle so make use of the distance formula. Correctly put the formula of V an X. Make use of V value to find kinetic energy of the particle and X value for the potential energy.