Solveeit Logo

Question

Physics Question on Oscillations

A particle executes linear simple harmonic motion with an amplitude of 3cm3 \,cm. When the particle is at 2cm2\,cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is :

A

52π\frac{\sqrt{5}}{2 \pi }

B

4π5\frac{4 \pi }{\sqrt{5}}

C

2π3\frac{2 \pi }{\sqrt{3}}

D

5π\frac{\sqrt{5}}{ \pi }

Answer

4π5\frac{4 \pi }{\sqrt{5}}

Explanation

Solution

v=ωA2x2v=\omega \sqrt{A^{2}-x^{2}}
a=xω2a=x \omega^{2}
v=av=a
ωA2x2=xω2\omega \sqrt{A^{2}-x^{2}}=x \omega^{2}
(3)2(2)2=2(2πT)\sqrt{(3)^{2}-(2)^{2}}=2\left(\frac{2 \pi}{T}\right)
5=4πT\sqrt{5}=\frac{4 \pi}{T}
T=4π5T=\frac{4 \pi}{\sqrt{5}}