Solveeit Logo

Question

Physics Question on work, energy and power

A particle accelerating uniformly has velocity vv at time t1t_1. What is work done in time tt?

A

12mv2t12t2\frac{1}{2} \frac{mv^2}{t_1^2} t^2

B

12(mvt1)2t2\frac{1}{2} \left(\frac{mv}{t_1} \right)^2 t^2

C

mv2t12t2\frac{mv^2}{t_1^2} t^2

D

2mv2t12t2\frac{2mv^2}{t_1^2} t^2

Answer

12mv2t12t2\frac{1}{2} \frac{mv^2}{t_1^2} t^2

Explanation

Solution

Velocity of particle accelerating uniformly in time t1t_1
v=at1a=vt1v=at_1 \Rightarrow a =\frac{v}{t_1}
Velocity of particle in time tt
v=at=vtt1v'=at =\frac{vt}{t_1}
According to work-energy theorem,
work done = change in kinetic energy
i,e Wext=ΔKW_{ext}=\Delta K
or Wext=12mv20W_{ext}=\frac{1}{2}mv'^2-0
=12m(vtt1)2=\frac{1}{2}m \left(\frac{vt}{t_1}\right)^2
=12mv2t12t2=\frac{1}{2}\frac{mv^2}{t^2_1}t^2