Solveeit Logo

Question

Question: A particle A with a mass \(m_{A}\)is moving with a velocity V and hits a particle B of mass\(m_{B}\...

A particle A with a mass mAm_{A}is moving with a velocity

V and hits a particle B of massmBm_{B}at rest. If motion is one dimensional and take the collision is elastic, then the change in the de Broglie wavelength of the particle A is:

A

h2mAV[(mA+mB)(mAmB)1]\frac{h}{2m_{A^{V}}}\left\lbrack \frac{\left( m_{A} + m_{B} \right)}{\left( m_{A} - m_{B} \right)} - 1 \right\rbrack

B

)h2mAV[(mAmB)(mA+mB)1]\frac{h}{2m_{A^{V}}}\left\lbrack \frac{\left( m_{A} - m_{B} \right)}{\left( m_{A} + m_{B} \right)} - 1 \right\rbrack

C

)hmAV[(mA+mB)(mAmB)1]\frac{h}{m_{A^{V}}}\left\lbrack \frac{\left( m_{A} + m_{B} \right)}{\left( m_{A} - m_{B} \right)} - 1 \right\rbrack

D

)2hmAV[(mA+mB)(mAmB)1]\frac{2h}{m_{A^{V}}}\left\lbrack \frac{\left( m_{A} + m_{B} \right)}{\left( m_{A} - m_{B} \right)} - 1 \right\rbrack

Answer

)hmAV[(mA+mB)(mAmB)1]\frac{h}{m_{A^{V}}}\left\lbrack \frac{\left( m_{A} + m_{B} \right)}{\left( m_{A} - m_{B} \right)} - 1 \right\rbrack

Explanation

Solution

: According to law of conservation of momentum

mAv+mB×0=mAvA+mBvBm_{A}v + m_{B} \times 0 = m_{A}v_{A} + m_{B}v_{B}

Or mA(vvA)=mBvBm_{A}(v - v_{A}) = m_{B}v_{B}……. (i)

According to law of conservation of kinetic energy

12mAv2=12mAvA2+12mBvB2\frac{1}{2}m_{A}v^{2} = \frac{1}{2}m_{A}v_{A}^{2} + \frac{1}{2}m_{B}v_{B}^{2}

Or mA(v2vA2)=mBvB2m_{A}(v^{2} - v_{A}^{2}) = m_{B}v_{B}^{2}

ormA(vvA)(v+vA)=mBvB2m_{A}(v - v_{A})(v + v_{A}) = m_{B}v_{B}^{2}….. (ii)

Dividing (ii) by (i) we get

v+vA=vBv + v_{A} = v_{B}…… (iii)

Solving (i) and (iii) we get

vA=(mAmBmA+mB)vandvB=(2mAmA+mB)vv_{A} = \left( \frac{m_{A} - m_{B}}{m_{A} + m_{B}} \right)vandv_{B} = \left( \frac{2m_{A}}{m_{A} + m_{B}} \right)v

λinitial=hmAv\lambda_{initial} = \frac{h}{m_{Av}}

λfinal=hmAVA=h(mA+mB)mA(mAmB)v\lambda_{final} = \frac{h}{m_{A}V_{A}} = \frac{h(m_{A} + m_{B})}{m_{A}(m_{A} - m_{B})v}

Δλ=λfinalλinitial=hmAv[(mA+mB)mAmB1]\therefore\Delta\lambda = \lambda_{final} - \lambda_{initial} = \frac{h}{m_{A}v}\left\lbrack \frac{(m_{A} + m_{B})}{m_{A} - m_{B}} - 1 \right\rbrack