Question
Question: A particle A with a mass \(m_{A}\)is moving with a velocity V and hits a particle B of mass\(m_{B}\...
A particle A with a mass mAis moving with a velocity
V and hits a particle B of massmBat rest. If motion is one dimensional and take the collision is elastic, then the change in the de Broglie wavelength of the particle A is:
2mAVh[(mA−mB)(mA+mB)−1]
)2mAVh[(mA+mB)(mA−mB)−1]
)mAVh[(mA−mB)(mA+mB)−1]
)mAV2h[(mA−mB)(mA+mB)−1]
)mAVh[(mA−mB)(mA+mB)−1]
Solution
: According to law of conservation of momentum
mAv+mB×0=mAvA+mBvB
Or mA(v−vA)=mBvB……. (i)
According to law of conservation of kinetic energy
21mAv2=21mAvA2+21mBvB2
Or mA(v2−vA2)=mBvB2
ormA(v−vA)(v+vA)=mBvB2….. (ii)
Dividing (ii) by (i) we get
v+vA=vB…… (iii)
Solving (i) and (iii) we get
vA=(mA+mBmA−mB)vandvB=(mA+mB2mA)v
λinitial=mAvh
λfinal=mAVAh=mA(mA−mB)vh(mA+mB)
∴Δλ=λfinal−λinitial=mAvh[mA−mB(mA+mB)−1]