Solveeit Logo

Question

Question: A paramagnetic sample shows a net magnetization of 6 Am’1 when placed in an external magnetic field ...

A paramagnetic sample shows a net magnetization of 6 Am’1 when placed in an external magnetic field of 0.4 T at a temperature of 4 K. When the same sample is placed in an external magnetic field of 0.3 T at a temperature of 24 K, the magnetization will be

A

0.75 Am-1

B

1.0 Am-1

C

1.25 Am-1

D

1.5 Am-1

Answer

0.75 Am-1

Explanation

Solution

For a paramagnetic material, the magnetization (M) is directly proportional to the applied magnetic field (B) and inversely proportional to the absolute temperature (T). This relationship is described by Curie's Law:

M=CBTM = C \frac{B}{T}

where C is Curie's constant.

Given the initial conditions (Case 1):

M1=6 Am1M_1 = 6 \text{ Am}^{-1}

B1=0.4 TB_1 = 0.4 \text{ T}

T1=4 KT_1 = 4 \text{ K}

Given the final conditions (Case 2):

B2=0.3 TB_2 = 0.3 \text{ T}

T2=24 KT_2 = 24 \text{ K}

We need to find M2M_2.

From Curie's Law, we can write for both cases:

M1=CB1T1(1)M_1 = C \frac{B_1}{T_1} \quad \text{(1)}

M2=CB2T2(2)M_2 = C \frac{B_2}{T_2} \quad \text{(2)}

Divide equation (2) by equation (1):

M2M1=CB2T2CB1T1\frac{M_2}{M_1} = \frac{C \frac{B_2}{T_2}}{C \frac{B_1}{T_1}}

M2M1=B2T2×T1B1\frac{M_2}{M_1} = \frac{B_2}{T_2} \times \frac{T_1}{B_1}

Now, substitute the given values:

M2=M1×B2B1×T1T2M_2 = M_1 \times \frac{B_2}{B_1} \times \frac{T_1}{T_2}

M2=6 Am1×0.3 T0.4 T×4 K24 KM_2 = 6 \text{ Am}^{-1} \times \frac{0.3 \text{ T}}{0.4 \text{ T}} \times \frac{4 \text{ K}}{24 \text{ K}}

M2=6×34×16M_2 = 6 \times \frac{3}{4} \times \frac{1}{6}

M2=6×3×14×6M_2 = \frac{6 \times 3 \times 1}{4 \times 6}

M2=1824M_2 = \frac{18}{24}

M2=34M_2 = \frac{3}{4}

M2=0.75 Am1M_2 = 0.75 \text{ Am}^{-1}

Therefore, the magnetization will be 0.75 Am10.75 \text{ Am}^{-1}.