Solveeit Logo

Question

Question: A parallelogram is constructed on \(5 \bar { a } + 2 \bar { b }\) and \(\bar { a } - 3 \bar { b }\)...

A parallelogram is constructed on 5aˉ+2bˉ5 \bar { a } + 2 \bar { b } and aˉ3bˉ\bar { a } - 3 \bar { b } where |a| = 22\sqrt { 2 } and |b| = 3. If the angle between is π/4, then the length of the longer diagonal is

A

473\sqrt { 473 }

B

593\sqrt { 593 }

C

474\sqrt { 474 }

D

594\sqrt { 594 }

Answer

593\sqrt { 593 }

Explanation

Solution

The vector representing one of the diagonals is

Hence the length of the diagonal = (6aˉbˉ)(6aˉbˉ)\sqrt { ( 6 \bar { a } - \bar { b } ) \cdot ( 6 \bar { a } - \bar { b } ) }

= 36a2+b212ab=36×8+912×3×2\sqrt { 36 | \overline { \mathrm { a } } | ^ { 2 } + | \overline { \mathrm { b } } | ^ { 2 } - 12 \overline { \mathrm { a } } \cdot \overline { \mathrm { b } } } = \sqrt { 36 \times 8 + 9 - 12 \times 3 \times 2 } =15. The other diagonal is 5aˉ+2bˉaˉ+3bˉ=4aˉ+5bˉ5 \bar { a } + 2 \bar { b } - \bar { a } + 3 \bar { b } = 4 \bar { a } + 5 \bar { b } .

Its length= 16a2+25b2+40ab\sqrt { 16 | \overline { \mathrm { a } } | ^ { 2 } + 25 | \overline { \mathrm { b } } | ^ { 2 } + 40 \overline { \mathrm { a } } \cdot \overline { \mathrm { b } } }

=128+225+40×2×3\sqrt { 128 + 225 + 40 \times 2 \times 3 }= 593\sqrt { 593 }