Solveeit Logo

Question

Question: A parallelogram is constructed on $3\overline{a}+\overline{b}$ and $\overline{a}-4\overline{b}$, whe...

A parallelogram is constructed on 3a+b3\overline{a}+\overline{b} and a4b\overline{a}-4\overline{b}, where a=6|\overline{a}|=6 and b=8|\overline{b}|=8, a\overline{a} and b\overline{b} are perpendicular. Then the length of the longer diagonal is:

A

36\sqrt{2}

B

4\sqrt{109}

C

24\sqrt{2}

D

24\sqrt{3}

Answer

4\sqrt{109}

Explanation

Solution

Let the two vectors forming the adjacent sides of the parallelogram be p=3a+b\vec{p} = 3\overline{a} + \overline{b} and q=a4b\vec{q} = \overline{a} - 4\overline{b}. The diagonals of the parallelogram are given by d1=p+q\vec{d_1} = \vec{p} + \vec{q} and d2=pq\vec{d_2} = \vec{p} - \vec{q}.

First, find the vectors representing the diagonals: d1=(3a+b)+(a4b)=4a3b\vec{d_1} = (3\overline{a} + \overline{b}) + (\overline{a} - 4\overline{b}) = 4\overline{a} - 3\overline{b} d2=(3a+b)(a4b)=3a+ba+4b=2a+5b\vec{d_2} = (3\overline{a} + \overline{b}) - (\overline{a} - 4\overline{b}) = 3\overline{a} + \overline{b} - \overline{a} + 4\overline{b} = 2\overline{a} + 5\overline{b}

We are given that a=6|\overline{a}| = 6, b=8|\overline{b}| = 8, and a\overline{a} and b\overline{b} are perpendicular. This means ab=0\overline{a} \cdot \overline{b} = 0.

The square of the magnitude of a vector of the form c1a+c2bc_1\overline{a} + c_2\overline{b} is given by: c1a+c2b2=(c1a+c2b)(c1a+c2b)|c_1\overline{a} + c_2\overline{b}|^2 = (c_1\overline{a} + c_2\overline{b}) \cdot (c_1\overline{a} + c_2\overline{b}) =c12a2+c22b2+2c1c2(ab)= c_1^2|\overline{a}|^2 + c_2^2|\overline{b}|^2 + 2c_1c_2(\overline{a} \cdot \overline{b}) Since ab=0\overline{a} \cdot \overline{b} = 0, this simplifies to: c1a+c2b2=c12a2+c22b2|c_1\overline{a} + c_2\overline{b}|^2 = c_1^2|\overline{a}|^2 + c_2^2|\overline{b}|^2

Now, calculate the square of the magnitudes of the diagonals:

For d1=4a3b\vec{d_1} = 4\overline{a} - 3\overline{b}: d12=(4)2a2+(3)2b2|\vec{d_1}|^2 = (4)^2|\overline{a}|^2 + (-3)^2|\overline{b}|^2 d12=16a2+9b2|\vec{d_1}|^2 = 16|\overline{a}|^2 + 9|\overline{b}|^2 Substitute the given values a=6|\overline{a}|=6 and b=8|\overline{b}|=8: d12=16(62)+9(82)=16(36)+9(64)=576+576=1152|\vec{d_1}|^2 = 16(6^2) + 9(8^2) = 16(36) + 9(64) = 576 + 576 = 1152 d1=1152=576×2=242|\vec{d_1}| = \sqrt{1152} = \sqrt{576 \times 2} = 24\sqrt{2}

For d2=2a+5b\vec{d_2} = 2\overline{a} + 5\overline{b}: d22=(2)2a2+(5)2b2|\vec{d_2}|^2 = (2)^2|\overline{a}|^2 + (5)^2|\overline{b}|^2 d22=4a2+25b2|\vec{d_2}|^2 = 4|\overline{a}|^2 + 25|\overline{b}|^2 Substitute the given values a=6|\overline{a}|=6 and b=8|\overline{b}|=8: d22=4(62)+25(82)=4(36)+25(64)=144+1600=1744|\vec{d_2}|^2 = 4(6^2) + 25(8^2) = 4(36) + 25(64) = 144 + 1600 = 1744 d2=1744=16×109=4109|\vec{d_2}| = \sqrt{1744} = \sqrt{16 \times 109} = 4\sqrt{109}

To find the longer diagonal, we compare the squares of their lengths: d12=1152|\vec{d_1}|^2 = 1152 d22=1744|\vec{d_2}|^2 = 1744 Since 1744>11521744 > 1152, the diagonal d2\vec{d_2} is longer.

The length of the longer diagonal is 41094\sqrt{109}.