Solveeit Logo

Question

Question: A parallelogram has diagonals expressed as \(\overrightarrow{A} = 5\widehat{i} - 4\widehat{j} + 3\wi...

A parallelogram has diagonals expressed as A=5i^4j^+3k^\overrightarrow{A} = 5\widehat{i} - 4\widehat{j} + 3\widehat{k} and B=3i^+2j^k^\overrightarrow{B} = 3\widehat{i} + 2\widehat{j} - \widehat{k}. Area of parallelogram is

A

(a)117\sqrt{117} units

A

(b)171\sqrt{171} units

A

(c)711\sqrt{711} units

A

(d)107\sqrt{107} units

Explanation

Solution

(b)

i^j^k^543321\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 5 & - 4 & 3 \\ 3 & 2 & - 1 \end{matrix} \right|

A×B\overrightarrow{A} \times \overrightarrow{B} = -2i^\widehat{i} + 14j^\widehat{j} + 22k^\widehat{k}

Area = 1/2 |A×B\overrightarrow{A} \times \overrightarrow{B}| = 12+72+112\sqrt{1^{2} + 7^{2} + 11^{2}} = 171\sqrt{171} unit