Solveeit Logo

Question

Question: A parallel plate capacitor of capacitance C has spacing d between two plates having area A. The re...

A parallel plate capacitor of capacitance C has spacing d between two plates having area A.
The region between the plates is filled with N dielectric layers, parallel to its plates, each with N dielectric layers, parallel to its plates, each with thickness δ=dN{{\delta = }}\dfrac{{{d}}}{{{N}}}. The dielectric constant of the mth{{{m}}^{{{th}}}}s layer is Km=K(1+mN){{{K}}_{{m}}} = {{K}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right). For a very large N(>103)\left( { > {{10}^3}} \right), the capacitance C isα(Kε0Adln2){{\alpha }}\left( {\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{dln2}}}}} \right).
The value of α\alpha will be ……………………………. [ε0{{{\varepsilon }}_{{0}}}is the permittivity of free space]

Explanation

Solution

To find the required value for α we have to understand the region between the plates having N dielectric layers is equivalent to combination N-capacitors having different values of dielectric constant. So, we have to calculate the small elemental capacitance for each capacitor in a sequent manner and then take their equivalent capacitance. We take the formula for an elemental capacitor as:- dc=ε0KmAdx{{dc = }}\dfrac{{{{{\varepsilon }}_{{0}}}{{{K}}_{{m}}}{{A}}}}{{{{dx}}}} , where dc{{dc }}is the elemental capacitance dx is the spacing between plates having elemental area A. Then after we will calculate the equivalent capacitance by the formula: 1Ceq=1dc\dfrac{1}{{{{{C}}_{{{eq}}}}}} = \int {\dfrac{1}{{{{dc}}}}} and get the required value for α.

Complete step by step answer:
To calculate the elemental capacitance we are taking small elemental capacitor at a distance x of dielectric thickness dx along with the spacing of the plate as shown in figure 1.1
Formula used: dc=ε0KmAdx{{dc = }}\dfrac{{{{{\varepsilon }}_{{0}}}{{{K}}_{{m}}}{{A}}}}{{{{dx}}}}, where dc{{dc }}is the elemental capacitance dx is the spacing between plates having elemental area A.

As per the information given in the question we have given that-

δ=dN{{\delta = }}\dfrac{{{d}}}{{{N}}}……………. (i)
Km=K(1+mN){{{K}}_{{m}}} = {{K}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)………. (ii)
C=α(Kε0Adln2){{C = \alpha }}\left( {\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{dln2}}}}} \right)………….(iii)

xm=dN \Rightarrow \dfrac{x}{m} = \dfrac{d}{N}……………… (iv)
For the series combination of dielectrics formula used:
1Ceq=1dc\dfrac{1}{{{{{C}}_{{{eq}}}}}} = \int {\dfrac{1}{{{{dc}}}}} ………………… (v)
Since, 1dc=dxkmε0A\dfrac{{{1}}}{{{{dc}}}}{{ = }}\dfrac{{{{dx}}}}{{{{{k}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}
1dc=dxkmε0A\Rightarrow \dfrac{{{1}}}{{{{dc}}}}{{ = }}\dfrac{{{{dx}}}}{{{{{k}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}…………… (vi)
Substitute the value of 1dc\dfrac{1}{{{{dc}}}}in the equation (v), we get
1Ceq=0ddxKmε0A\dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_0^d {\dfrac{{{{dx}}}}{{{{{K}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}} …………….. (vii)
Using the equation (iii) in equation (vii)
1Ceq=0ddxKε0A(1+mN)\Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{dx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)}}}
1Ceq=0ddxKε0A(1+xd)\Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{dx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{1 + }}\dfrac{x}{d}} \right)}}}
1Ceq=0dddxKε0A(d+x)\Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{ddx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{d + x}}} \right)}}}

1Ceq=dKε0Aln2 \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\dfrac{{{d}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}\ln 2
Ceq=Kε0Adln2\Rightarrow {{{C}}_{{{eq}}}}{{ = }}\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{d}}\ln 2}}……………….. (viii)
On comparing both the equation (viii) and (ii), we get
α=1\alpha = 1

\therefore The value of α=1\alpha = 1

Note:
In order to answer this type of question, the key is to know the basic algorithm behind the calculation of equivalent capacitance of a system having dielectric varies with certain parameters like varies with distance, varies with filling orientation, etc. So for grasping the ideas behind such conceptual problems one should have to practice a lot of numerical and derivative type problems on this topic.