Solveeit Logo

Question

Question: A parallel plate capacitor of area A, plate separation d and capacitance C is filled with three diff...

A parallel plate capacitor of area A, plate separation d and capacitance C is filled with three different dielectric materials having dielectric constants K1, K2 and K3 as shown in fig. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant K is given by

A

1K=1K1+1K2+12K3\frac { 1 } { K } = \frac { 1 } { K _ { 1 } } + \frac { 1 } { K _ { 2 } } + \frac { 1 } { 2 K _ { 3 } }

B

1K=1K1+K2+12K3\frac { 1 } { K } = \frac { 1 } { K _ { 1 } + K _ { 2 } } + \frac { 1 } { 2 K _ { 3 } }

C

K=K1K2K1+K2+2K3K = \frac { K _ { 1 } K _ { 2 } } { K _ { 1 } + K _ { 2 } } + 2 K _ { 3 }

D

K=K1+K2+2K3K = K _ { 1 } + K _ { 2 } + 2 K _ { 3 }

Answer

1K=1K1+K2+12K3\frac { 1 } { K } = \frac { 1 } { K _ { 1 } + K _ { 2 } } + \frac { 1 } { 2 K _ { 3 } }

Explanation

Solution

The effective capacitance is given by

1Ceq=dε0A[12K3+1(K1+K2)]\frac { 1 } { C _ { e q } } = \frac { d } { \varepsilon _ { 0 } A } \left[ \frac { 1 } { 2 K _ { 3 } } + \frac { 1 } { \left( K _ { 1 } + K _ { 2 } \right) } \right]

The capacitance of capacitor with single dielectric of dielectric constant K is C=Kε0AdC = \frac { K \varepsilon _ { 0 } A } { d }

According to question Ceq=CC _ { e q } = C i.e.,

ε0Ad[12K3+1K1+K2]=Kε0Ad\frac { \varepsilon _ { 0 } A } { d \left[ \frac { 1 } { 2 K _ { 3 } } + \frac { 1 } { K _ { 1 } + K _ { 2 } } \right] } = \frac { K \varepsilon _ { 0 } A } { d }

1K=12K3+1K1+K2\frac { 1 } { K } = \frac { 1 } { 2 K _ { 3 } } + \frac { 1 } { K _ { 1 } + K _ { 2 } }.