Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A parallel-plate capacitor of area AA, plate separation d and capacitance CC is filled with four dielectric materials having dielectric constants k1,k2,k3k_1, k_2, k_3 and k4 k_4 as shown in the figure below. If a single dielectric material is to be used to have the same capacitance CC in this capacitor, then its dielectric constant kk is given by

A

k=k1+k2+k3+3k4k = k _1 + k_2 + k_3 + 3k_4

B

k=23(k1+k2+k3)+2k4k = \frac{2}{3} (k_1 + k_2 + k_3) + 2k_4

C

2k=3k1+k2+k3+1k4\frac{2}{k} = \frac{3}{k_1 + k_2 + k_3} + \frac{1}{k_4}

D

1k=1k1+1k2+1k3+32k4\frac{1}{k} = \frac{1}{k_1 } + \frac{1}{k_2} + \frac{1}{k_3} + \frac{3}{2 k_4}

Answer

2k=3k1+k2+k3+1k4\frac{2}{k} = \frac{3}{k_1 + k_2 + k_3} + \frac{1}{k_4}

Explanation

Solution

1C=1C1+1C2\frac{1}{C} = \frac{1}{C_{1}} + \frac{1}{C_{2}}
dkA0=3d2(k1+k2+k3)A0+d2k4A0\frac{d}{kA \in_{0} } = \frac{3d}{2\left(k_{1} + k_{2}+k_{3}\right)A \in_{0}} + \frac{d}{2k_{4}A \in_{0}}
dkA0=dA0[33(k1+k2+k3)+12k4]\frac{d}{kA \in_{0}} = \frac{d}{A \in_{0}} \left[\frac{3}{3\left(k_{1} + k_{2} +k_{3}\right)} + \frac{1}{2k_{4}}\right]
2k=3k1+k2+k3=1k4\frac{2}{k} = \frac{3}{k_{1} + k_{2} +k_{3}} = \frac{1}{k_{4} }