Solveeit Logo

Question

Question: A parallel plate capacitor is to be constructed which can store q = 10 µC charge at V = 1000 volt. T...

A parallel plate capacitor is to be constructed which can store q = 10 µC charge at V = 1000 volt. The minimum plate area of the capacitor is required to be A₁ when space between the plates has air. If a dielectric of constant K = 3 is used between the plates the minimum plate area required to make such a capacitor is A₂. The breakdown field for the dielectric is 8 times that of air. Find A17A2\frac{A_1}{7A_2}.

Answer

24/7

Explanation

Solution

Let CC be the required capacitance. C=qV=10×106C1000V=108FC = \frac{q}{V} = \frac{10 \times 10^{-6} \, C}{1000 \, V} = 10^{-8} \, F.

For a parallel plate capacitor with plate area AA and separation dd with a dielectric of constant KK, the capacitance is C=ϵ0KAdC = \frac{\epsilon_0 K A}{d}. The electric field between the plates is E=VdE = \frac{V}{d}. The dielectric can withstand a maximum electric field EmaxE_{max} before breakdown. Thus, EEmaxE \le E_{max}, which means VdEmax\frac{V}{d} \le E_{max}. This gives a minimum allowed plate separation dmin=VEmaxd_{min} = \frac{V}{E_{max}}.

To achieve the required capacitance CC with the minimum possible plate area AminA_{min}, we must use the minimum possible separation dmind_{min}. C=ϵ0KAmindmin=ϵ0KAminV/EmaxC = \frac{\epsilon_0 K A_{min}}{d_{min}} = \frac{\epsilon_0 K A_{min}}{V/E_{max}}. Solving for AminA_{min}: Amin=CVϵ0KEmaxA_{min} = \frac{C V}{\epsilon_0 K E_{max}}.

Case 1: Air between plates (K1=1K_1 = 1). The minimum plate area is A1A_1. Let the breakdown field for air be Emax,1E_{max,1}. A1=CVϵ0K1Emax,1=CVϵ0(1)Emax,1=CVϵ0Emax,1A_1 = \frac{C V}{\epsilon_0 K_1 E_{max,1}} = \frac{C V}{\epsilon_0 (1) E_{max,1}} = \frac{C V}{\epsilon_0 E_{max,1}}.

Case 2: Dielectric between plates (K2=3K_2 = 3). The minimum plate area is A2A_2. Let the breakdown field for the dielectric be Emax,2E_{max,2}. A2=CVϵ0K2Emax,2A_2 = \frac{C V}{\epsilon_0 K_2 E_{max,2}}.

We are given that the breakdown field for the dielectric is 8 times that of air, so Emax,2=8Emax,1E_{max,2} = 8 E_{max,1}.

Now, we find the ratio A1A2\frac{A_1}{A_2}: A1A2=CVϵ0Emax,1CVϵ0K2Emax,2=K2Emax,2Emax,1\frac{A_1}{A_2} = \frac{\frac{C V}{\epsilon_0 E_{max,1}}}{\frac{C V}{\epsilon_0 K_2 E_{max,2}}} = \frac{K_2 E_{max,2}}{E_{max,1}}. Substitute the values K2=3K_2 = 3 and Emax,2=8Emax,1E_{max,2} = 8 E_{max,1}: A1A2=3×(8Emax,1)Emax,1=3×8=24\frac{A_1}{A_2} = \frac{3 \times (8 E_{max,1})}{E_{max,1}} = 3 \times 8 = 24.

The question asks for the value of A17A2\frac{A_1}{7A_2}. A17A2=17×A1A2=17×24=247\frac{A_1}{7A_2} = \frac{1}{7} \times \frac{A_1}{A_2} = \frac{1}{7} \times 24 = \frac{24}{7}.

The final answer is 247\frac{24}{7}.