Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A parallel plate air capacitor has a capacitance CC. When it is half filled with a dielectric of dielectric constant 55, the percentage increase in the capacitance will be :

A

4

B

0.666

C

0.333

D

2

Answer

0.666

Explanation

Solution

Initial capacitance
C=ε0AdC=\frac{\varepsilon_{0} A}{d}
When it is half filled by a dielectric of dielectric constant kk, then
C1=Kε0Ad/2=2Kε0AdC_{1}=\frac{K \varepsilon_{0} A}{d / 2}=2 K \frac{\varepsilon_{0} A}{d}
and C2=εoAd/2=2ε0AdC_{2}=\frac{\varepsilon_{o} A}{d / 2}=\frac{2 \varepsilon_{0} A}{d}
1C=1C1+1C2=d2ε0A(1K+1)\therefore \frac{1}{C'}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{d}{2 \varepsilon_{0} A}\left(\frac{1}{K}+1\right)
=d2ε0A(15+1)=\frac{d}{2 \varepsilon_{0} A}\left(\frac{1}{5}+1\right)
=610dε0A=\frac{6}{10} \frac{d}{\varepsilon_{0} A}
C=5ε0A3d\therefore C'=\frac{5 \varepsilon_{0} A}{3 d}
Hence, increase in capacitance
=53ε0Adε0Adε0Ad=\frac{\frac{5}{3} \frac{\varepsilon_{0} A}{d}-\frac{\varepsilon_{0} A}{d}}{\frac{\varepsilon_{0} A}{d}}
=531=23=\frac{5}{3}-1=\frac{2}{3}
=66.6%=66.6 \%