Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A parallel plane condenser is filled with two dielectrics as shown in figure. Area of each plate is A in m2 and the separation is d metre. The dielectric constants are K1{{K}_{1}} and K2{{K}_{2}} respectively. Its capacitance in farad will be:

A

2ε0Ad(K1+K2K1K2)\frac{2{{\varepsilon }_{0}}A}{d}\left( \frac{{{K}_{1}}+{{K}_{2}}}{{{K}_{1}}{{K}_{2}}} \right)

B

20Ad(K1K2K1+K2)\frac{2 \in_{0} A }{ d }\left(\frac{ K _{1} K _{2}}{ K _{1}+ K _{2}}\right)

C

ε0Ad(K1+K22K1K2)\frac{{{\varepsilon }_{0}}A}{d}\left( \frac{{{K}_{1}}+{{K}_{2}}}{2{{K}_{1}}{{K}_{2}}} \right)

D

ε0AK1+K22(d2K1+d1K2)\frac{{{\varepsilon }_{0}}A{{K}_{1}}+{{K}_{2}}}{2({{d}_{2}}{{K}_{1}}+{{d}_{1}}{{K}_{2}})}

Answer

20Ad(K1K2K1+K2)\frac{2 \in_{0} A }{ d }\left(\frac{ K _{1} K _{2}}{ K _{1}+ K _{2}}\right)

Explanation

Solution

From the formula C=ε0A1K1+1K2=ε0At(K1K2K1+K2)C=\frac{{{\varepsilon }_{0}}A}{\frac{1}{{{K}_{1}}}+\frac{1}{{{K}_{2}}}}=\frac{{{\varepsilon }_{0}}A}{t}\left( \frac{{{K}_{1}}{{K}_{2}}}{{{K}_{1}}+{{K}_{2}}} \right) =2ε0Ad(K1K2K1+K2)=\frac{2{{\varepsilon }_{0}}A}{d}\left( \frac{{{K}_{1}}{{K}_{2}}}{{{K}_{1}}+{{K}_{2}}} \right)