Solveeit Logo

Question

Physics Question on Youngs double slit experiment

A parallel beam of light of intensity I0I_0 is incident on a coated glass plate. If 25%25\% of the incident light is reflected from the upper surface and 50%50\% of light is reflected from the lower surface of the glass plate, the ratio of maximum to minimum intensity in the interference region of the reflected light is

A

(12+381238)2\left(\frac{\frac{1}{2} + \sqrt{\frac{3}{8}}}{\frac{1}{2}- \sqrt{\frac{3}{8}}}\right)^{2}

B

(14+381238)2\left(\frac{\frac{1}{4} + \sqrt{\frac{3}{8}}}{\frac{1}{2}- \sqrt{\frac{3}{8}}}\right)^{2}

C

58\frac{5}{8}

D

85\frac{8}{5}

Answer

(12+381238)2\left(\frac{\frac{1}{2} + \sqrt{\frac{3}{8}}}{\frac{1}{2}- \sqrt{\frac{3}{8}}}\right)^{2}

Explanation

Solution

The correct answer is A:(12+381238)2\left(\frac{\frac{1}{2} + \sqrt{\frac{3}{8}}}{\frac{1}{2}- \sqrt{\frac{3}{8}}}\right)^{2}
According to question, we can derive;
I1=I04I2=38I0I_{1}=\frac{I_{0}}{4} \Rightarrow I_{2}=\frac{3}{8} I_{0}
We know that,
\frac{I_{\max }}{I_{\min }}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}=\left(\frac{\frac{1}{2}+\sqrt{\frac{3}{8}}}{\frac{1}{2}-\sqrt{\frac{3}{8}}}\right)^{2}$$(\because I_1=\frac{I_0}{4},I_2=\frac{3}{8}I_0)