Solveeit Logo

Question

Question: A parabola is drawn to pass through \[A\] and \[B\], the ends of a diameter of a given circle of rad...

A parabola is drawn to pass through AA and BB, the ends of a diameter of a given circle of radius aa and to have as directrix a tangent to a concentric circle of radius bb; the axes being ABAB and a perpendicular diameter, prove that the locus of the focus of the parabola is x2b2+y2b2a2=1\dfrac{{{x}^{2}}}{{{b}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}-{{a}^{2}}}=1.

Explanation

Solution

Hint: Any point on the parabola is equidistant from the focus and directrix.

Let the equation of the circle be x2+y2=a2.....(i){{x}^{2}}+{{y}^{2}}={{a}^{2}}.....\left( i \right)
In the question, it is given that AA and BB are the ends of the diameter of the circle.


So, let A=(a,0)A=\left( a,0 \right) and B=(a,0)B=\left( -a,0 \right)
In the question, it is given that the radius of the concentric circle is bb.
So, let the equation of concentric circle be x2+y2=b2....(ii){{x}^{2}}+{{y}^{2}}={{b}^{2}}....\left( ii \right)
Now, the directrix of the parabola is tangent to the concentric circle.
First, we find the equation of tangent to the concentric circle.
We know, the equation of tangent to a circle x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}} in slope form is given as y=mx±r1+m2y=mx\pm r\sqrt{1+{{m}^{2}}}.
So, equation of tangent to (ii)\left( ii \right)is
y=mx+bm2+1y=mx+b\sqrt{{{m}^{2}}+1}
Or mxy+bm2+1=0....(iii)mx-y+b\sqrt{{{m}^{2}}+1}=0....\left( iii \right)
Equation (iii)\left( iii \right) is also the directrix to the parabola.
Now, we want to find the locus of the focus of the parabola.
So, let the focus of the parabola be F(h,k)F\left( h,k \right).
Now, by the definition of a parabola, any point on the parabola is equidistant from the focus and the directrix.
Now, from the question, we know that the ends of diameter of (i)\left( i \right)i.e. AA and BB lie on the parabola.
We know that the distance between two points (x1,y1)({{x}_{1}},{{y}_{1}}) and (x2,y2)({{x}_{2}},{{y}_{2}}) is given as d=(x1x2)2+(y1y2)2d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}} and the distance of a point (x1,y1)({{x}_{1}},{{y}_{1}}) from the line lx+my+n=0lx+my+n=0 is given
as d=lx1+my1+nl2+m2d=\dfrac{l{{x}_{1}}+m{{y}_{1}}+n}{\sqrt{{{l}^{2}}+{{m}^{2}}}}.
So, for A(a,0)A\left( a,0 \right), we have
(ha)2+k2=m(a)1(0)+bm2+1m2+1\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}=\dfrac{m\left( a \right)-1\left( 0 \right)+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}
(ha)2+k2=am+bm2+1m2+1....(iv)\Rightarrow \sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}=\dfrac{am+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}....\left( iv \right)
For B(a,0)B\left( -a,0 \right), we have
(h+a)2+k2=m(a)1(0)+bm2+1m2+1\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{m\left( -a \right)-1\left( 0 \right)+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}
(h+a)2+k2=am+bm2+1m2+1....(v)\Rightarrow \sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{-am+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}....\left( v \right)
Adding (iv)\left( iv \right)and (v)\left( v \right), we have
(ha)2+k2+(h+a)2+k2=2bm2+1m2+1\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}+\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{2b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}
(ha)2+k2+(h+a)2+k2=2b\Rightarrow \sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}+\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=2b
(h+a)2+k2=2b(ha)2+k2\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=2b-\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}
Now, on squaring both sides we get,
h2+2ah+a2+k2=4b2+h22ah+a2+k24b(ha)2+k2{{h}^{2}}+2ah+{{a}^{2}}+{{k}^{2}}=4{{b}^{2}}+{{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}}-4b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}}

& \Rightarrow 4{{b}^{2}}-4ah=4b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}} \\\ & \Rightarrow {{b}^{2}}-ah=b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}} \\\ \end{aligned}$$ Now, let’s square both sides again to remove the square root sign. We get $${{b}^{4}}+{{a}^{2}}{{h}^{2}}-2{{b}^{2}}ah={{b}^{2}}({{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}})$$ On dividing both sides with $${{b}^{2}}$$, we get $${{b}^{2}}+\dfrac{{{a}^{2}}{{h}^{2}}}{{{b}^{2}}}-2ah={{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}}$$ $$\Rightarrow {{b}^{2}}-{{a}^{2}}-{{k}^{2}}={{h}^{2}}-\dfrac{{{a}^{2}}{{h}^{2}}}{{{b}^{2}}}$$ $$\Rightarrow ({{b}^{2}}-{{a}^{2}})(1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}})={{h}^{2}}(1-\dfrac{{{a}^{2}}}{{{b}^{2}}})$$ $$\Rightarrow ({{b}^{2}}-{{a}^{2}})(1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}})={{h}^{2}}(\dfrac{{{b}^{2}}-{{a}^{2}}}{{{b}^{2}}})$$ $$\Rightarrow 1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}}=\dfrac{{{h}^{2}}}{{{b}^{2}}}$$ $$\Rightarrow 1=\dfrac{{{h}^{2}}}{{{b}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}}$$ So, the locus of $$(h,k)$$ is given by replacing $$(h,k)$$by $$(x,y)$$ So, the equation of the locus is given as $$\dfrac{{{x}^{2}}}{{{b}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}-{{a}^{2}}}=1$$ $$$$$$$$ Note: The distance between two points $$({{x}_{1}},{{y}_{1}})$$ and $$({{x}_{2}},{{y}_{2}})$$ is given as $$d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}$$ and not $$d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}$$. It is a very common mistake made by students.