Solveeit Logo

Question

Physics Question on thermal properties of matter

A pan filled with hot food cools from 94C94 ^{\circ}C to 86C86^{\circ}C in 22 minutes. When the room temperature is 20C20 ^{\circ}C. How long will it cool from 74C74 ^{\circ}C to 66C66 ^{\circ}C ?

A

2 minutes

B

2.8 minutes

C

2.5 minutes

D

1.8 minutes

Answer

2.8 minutes

Explanation

Solution

Key Idea When temperature difference is not large, rate of temperature change is given by Newton'8 law of cooling. In first case,
Average temperature
=94+862=1802=90C=\frac{94+86}{2}=\frac{180}{2}=90^{\circ} C
Excess temperature =9020=70C=90^{\circ}-20^{\circ}=70^{\circ} C
Rate of fall in temperature,
dθ1dt=[94862]=[82]\frac{d \theta_{1}}{d t} =-\left[\frac{94-86}{2}\right]=-\left[\frac{8}{2}\right]
=4Cmin1=-4^{\circ} C \min ^{-1}
dθdt(θθ0)=k(θθ0)\frac{d \theta}{d t} \propto\left(\theta-\theta_{0}\right) =-k\left(\theta-\theta_{0}\right)
4=k×70-4 =k \times 70 \dots(i)
In second case,
Average temperature
=74+662=1402=70C=\frac{74+66}{2}=\frac{140}{2}=70^{\circ} C
Excess temperature
=7020C=50C=70^{\circ}-20^{\circ} C =50^{\circ} C
Rate of fall in the temperaturre
dθ2dt=[7466t2]\frac{d \theta_{2}}{d t}=-\left[\frac{74-66}{t_{2}}\right]
=8Ct2min1=-\frac{8^{\circ} C }{t_{2}} min ^{-1}
8t2=k×50\therefore \frac{-8}{t_{2}}=k \times 50 \dots(ii)
On dividing E (i) by E (ii), we get
t22=75\frac{t_{2}}{2}=\frac{7}{5}
t2=145=2.8mint_{2}=\frac{14}{5}=2.8 \,min