Solveeit Logo

Question

Mathematics Question on Tangents and Normals

A pair of tangents are drawn from the origin to the circle x2+y2+20(x+y)+20=0x^2 + y^2+ 20 (x + y) + 20 = 0, then the equation of the pair of tangent are

A

x2+y25xy=0x^2 + y^2 - 5xy = 0

B

x2+y2+2x+y=0x^2 + y^2 + 2x + y = 0

C

x2+y2xy+7=0x^2 + y^2 - xy + 7 = 0

D

2x2+2y2+5xy=02x^2 + 2y^2 + 5xy = 0

Answer

2x2+2y2+5xy=02x^2 + 2y^2 + 5xy = 0

Explanation

Solution

Equation of pair of tangents is given by SS1=T2S S_{1}=T^{2}
or S=x2+y2+20(x+y)+20,S1=20S=x^{2}+y^{2}+20(x +y)+20, S_{1}=20,
T=10(x+y)+20=0T=10(x +y)+20=0
SS1=T2\therefore S S_{1}=T^{2}
20(x2+y2+20(x+y)+20)=102\Rightarrow 20\left(x^{2}+y^{2}+20(x +y)+20\right)=10^{2}
(x+y+2)2(x+y+2) 2
4x2+4y2+10xy=0\Rightarrow 4 x^{2}+4 y^{2}+10 x y=0
2x2+2y2+5xy=0\Rightarrow 2 x^{2}+2 y^{2}+5 x y=0