Solveeit Logo

Question

Question: A pair of tangents are drawn from the origin to the circle \(x ^ { 2 } + y ^ { 2 } + 20 ( x + y ) +...

A pair of tangents are drawn from the origin to the circle x2+y2+20(x+y)+20=0x ^ { 2 } + y ^ { 2 } + 20 ( x + y ) + 20 = 0 . The equation of the pair of tangents is.

A

x2+y2+10xy=0x ^ { 2 } + y ^ { 2 } + 10 x y = 0

B

x2+y2+5xy=0x ^ { 2 } + y ^ { 2 } + 5 x y = 0

C

2x2+2y2+5xy=02 x ^ { 2 } + 2 y ^ { 2 } + 5 x y = 0

D

2x2+2y25xy=02 x ^ { 2 } + 2 y ^ { 2 } - 5 x y = 0

Answer

2x2+2y2+5xy=02 x ^ { 2 } + 2 y ^ { 2 } + 5 x y = 0

Explanation

Solution

Equation of pair of tangents is given by SS1=T2S S _ { 1 } = T ^ { 2 }.

Here S=x2+y2+20(x+y)+20,S1=20S = x ^ { 2 } + y ^ { 2 } + 20 ( x + y ) + 20 , S _ { 1 } = 20

T=10(x+y)+20T = 10 ( x + y ) + 20

SS1=T2\therefore S S _ { 1 } = T ^ { 2 }

20{x2+y2+20(x+y)+20}=102(x+y+2)2\Rightarrow 20 \left\{ x ^ { 2 } + y ^ { 2 } + 20 ( x + y ) + 20 \right\} = 10 ^ { 2 } ( x + y + 2 ) ^ { 2 }

4x2+4y2+10xy=02x2+2y2+5xy=0\Rightarrow 4 x ^ { 2 } + 4 y ^ { 2 } + 10 x y = 0 \Rightarrow 2 x ^ { 2 } + 2 y ^ { 2 } + 5 x y = 0.