Solveeit Logo

Question

Mathematics Question on Horizontal and vertical lines

A pair of perpendicular straight lines passes through the origin and also through the point of intersection of the curve x2+y2=4x^2 + y^2 = 4 with x+y=ax + y = a. The set containing the value of 'aa' is

A

2,2\\{-2, 2\\}

B

3,3\\{-3, 3\\}

C

4,4\\{-4, 4\\}

D

5,5\\{-5, 5\\}

Answer

2,2\\{-2, 2\\}

Explanation

Solution

To make the given curves x2+y2=4x^{2}+y^{2}=4
and x+y=ax+y=a homogenous.
x2+y24x+y2x=0\therefore x^{2}+y^{2}-4 \frac{x +y^{2}}{x}=0
a2(x2+y2)4(x2+y2+2xy)=0\Rightarrow a^{2}\left(x^{2}+y^{2}\right)-4\left(x^{2}+y^{2}+2 x y\right)=0
x2(a24)+y2(a24)8xy=0\Rightarrow x^{2}\left(a^{2}-4\right)+y^{2}\left(a^{2}-4\right)-8 x y=0
Since, this is a perpendicular pair of straight lines.
a24+a24=0\therefore a^{2}-4+a^{2}-4=0
a2=4\Rightarrow a^{2}=4
a=±2\Rightarrow a=\pm 2
Hence, required set of a is 2,2\\{-2,2\\}.