Question
Question: If a + b, b + c, c + a are coterminus edges of parallelopiped, then its volume is...
If a + b, b + c, c + a are coterminus edges of parallelopiped, then its volume is

0
4 [b a c]
3 [a c b]
2 [a b c]
2[a b c]
Solution
Let the coterminal edges be
u=a+b,v=b+c,w=c+a.
The volume V of the parallelepiped is given by:
V=∣[u,v,w]∣=[a+b,b+c,c+a].
Using the linearity of the scalar triple product (i.e. the determinant function), we have:
[a+b,b+c,c+a]=[a,b+c,c+a]+[b,b+c,c+a].
Expanding the first term:
[a,b+c,c+a]=[a,b,c+a]+[a,c,c+a].
Now, applying linearity again:
[a,b,c+a]=[a,b,c]+[a,b,a] and [a,b,a]=0.
Similarly,
[a,c,c+a]=[a,c,c]+[a,c,a]=0.
Thus the first term equals [a,b,c].
Now, for the second term:
[b,b+c,c+a]=[b,b,c+a]+[b,c,c+a].
The first part [b,b,c+a]=0 and
[b,c,c+a]=[b,c,c]+[b,c,a]=[b,c,a].
Since the scalar triple product is cyclic, we have:
[b,c,a]=[a,b,c].
Thus, the second term equals [a,b,c].
Adding both terms:
[a+b,b+c,c+a]=[a,b,c]+[a,b,c]=2[a,b,c].
Hence, the volume is:
V=2[a,b,c]=2[a,b,c].