Solveeit Logo

Question

Question: If a + b, b + c, c + a are coterminus edges of parallelopiped, then its volume is...

If a + b, b + c, c + a are coterminus edges of parallelopiped, then its volume is

A

0

B

4 [b a c]

C

3 [a c b]

D

2 [a b c]

Answer

2[a b c]

Explanation

Solution

Let the coterminal edges be

u=a+b,v=b+c,w=c+a\vec{u} = \vec{a}+\vec{b}, \quad \vec{v} = \vec{b}+\vec{c}, \quad \vec{w} = \vec{c}+\vec{a}.

The volume VV of the parallelepiped is given by:

V=[u,v,w]=[a+b,b+c,c+a]V = \left|[\vec{u}, \vec{v}, \vec{w}]\right| = \left|[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]\right|.

Using the linearity of the scalar triple product (i.e. the determinant function), we have:

[a+b,b+c,c+a]=[a,b+c,c+a]+[b,b+c,c+a][\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}] = [\vec{a}, \vec{b}+\vec{c}, \vec{c}+\vec{a}] + [\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}].

Expanding the first term:

[a,b+c,c+a]=[a,b,c+a]+[a,c,c+a][\vec{a}, \vec{b}+\vec{c}, \vec{c}+\vec{a}] = [\vec{a}, \vec{b}, \vec{c}+\vec{a}] + [\vec{a}, \vec{c}, \vec{c}+\vec{a}].

Now, applying linearity again:

[a,b,c+a]=[a,b,c]+[a,b,a][\vec{a}, \vec{b}, \vec{c}+\vec{a}] = [\vec{a},\vec{b},\vec{c}] + [\vec{a},\vec{b},\vec{a}] and [a,b,a]=0[\vec{a},\vec{b},\vec{a}] = 0.

Similarly,

[a,c,c+a]=[a,c,c]+[a,c,a]=0[\vec{a}, \vec{c}, \vec{c}+\vec{a}] = [\vec{a},\vec{c},\vec{c}] + [\vec{a},\vec{c},\vec{a}] = 0.

Thus the first term equals [a,b,c][\vec{a}, \vec{b}, \vec{c}].

Now, for the second term:

[b,b+c,c+a]=[b,b,c+a]+[b,c,c+a][\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}] = [\vec{b},\vec{b}, \vec{c}+\vec{a}] + [\vec{b},\vec{c}, \vec{c}+\vec{a}].

The first part [b,b,c+a]=0[\vec{b},\vec{b}, \vec{c}+\vec{a}]=0 and

[b,c,c+a]=[b,c,c]+[b,c,a]=[b,c,a][\vec{b},\vec{c}, \vec{c}+\vec{a}] = [\vec{b},\vec{c},\vec{c}] + [\vec{b},\vec{c},\vec{a}] = [\vec{b}, \vec{c}, \vec{a}].

Since the scalar triple product is cyclic, we have:

[b,c,a]=[a,b,c][\vec{b},\vec{c},\vec{a}] = [\vec{a},\vec{b},\vec{c}].

Thus, the second term equals [a,b,c][\vec{a},\vec{b},\vec{c}].

Adding both terms:

[a+b,b+c,c+a]=[a,b,c]+[a,b,c]=2[a,b,c][\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}] = [\vec{a},\vec{b},\vec{c}] + [\vec{a}, \vec{b}, \vec{c}] = 2[\vec{a},\vec{b},\vec{c}].

Hence, the volume is:

V=2[a,b,c]=2[a,b,c]V = \left| 2[\vec{a},\vec{b},\vec{c}] \right| = 2\left| [\vec{a},\vec{b},\vec{c}] \right|.