Solveeit Logo

Question

Mathematics Question on Probability

A number xx is chosen at random from the set 1,2,3,4,.....,100\\{1, 2, 3, 4, ....., 100\\}. Define the event: A=A = the chosen number xx satisfies (x10)(x50)(x30)0\frac{\left(x-10\right)\left(x-50\right)}{\left(x-30\right)}\ge0 Then P(A)P(A) is :

A

0.71

B

0.7

C

0.51

D

0.2

Answer

0.71

Explanation

Solution

Given (x10)(x50)(x30)0\frac{\left(x-10\right)\left(x-50\right)}{\left(x-30\right)}\ge0
Let x10,x50x\ge10, x\ge50 equation will be true
x50\forall x\ge50
as (x50x30)0,x[10,30)\left(\frac{x-50}{x-30}\right)\ge0, \forall x\in[10, 30)
(x10)(x50)x300,x[10,30)\frac{\left(x-10\right)\left(x-50\right)}{x-30}\ge0, \forall x\in[10, 30)
Total value of xx between 1010 to 3030 is 2020.
Total values of xx between 5050 to 100100 including 5050 and 100100 is 5151.
Total values of x=51+20=71x = 51 + 20 = 71
P(A)=71100=0.71P\left(A\right)=\frac{71}{100}=0.71