Solveeit Logo

Question

Question: A number of holes are drilled along a diameter of a disc of radius \(R\) . To get minimum time peri...

A number of holes are drilled along a diameter of a disc of radius RR . To get minimum time period of oscillations the disc should be suspended from a horizontal axis passing through a hole whose distance from the centre should be

A

R2\frac { R } { 2 }

B

R2\frac { R } { \sqrt { 2 } }

C

R22\frac { R } { 2 \sqrt { 2 } }

D

Zero

Answer

R2\frac { R } { \sqrt { 2 } }

Explanation

Solution

T=2πLgT = 2 \pi \sqrt { \frac { L } { g } } where L=l2+k2lL = \frac { l ^ { 2 } + k ^ { 2 } } { l }

Here k2=R22k ^ { 2 } = \frac { R ^ { 2 } } { 2 } \therefore L=l2+R22lL = \frac { l ^ { 2 } + \frac { R ^ { 2 } } { 2 } } { l } =l+R22l= l + \frac { R ^ { 2 } } { 2 l }

For minimum time period LL should be minimum dLdl=0\frac { d L } { d l } = 0

ddl(l+R22l)=0\frac { d } { d l } \left( l + \frac { R ^ { 2 } } { 2 l } \right) = 0

1+R22(1l2)=1 + \frac { R ^ { 2 } } { 2 } \left( \frac { - 1 } { l ^ { 2 } } \right) = 1R22l2=01 - \frac { R ^ { 2 } } { 2 l ^ { 2 } } = 0l=R2l = \frac { R } { \sqrt { 2 } }.