Solveeit Logo

Question

Question: A number is a good number when the number is the product of two consecutive odd numbers. Find the su...

A number is a good number when the number is the product of two consecutive odd numbers. Find the sum of all four-digit good numbers.

Explanation

Solution

First find the consecutive odd numbers whose product is the smallest four-digit good number. After that find the consecutive odd numbers whose product is the largest four-digit good number. Then, find the general term of the good number. Now, find the number of terms by the arithmetic progression formula, an=a1+(n1)d{a_n} = {a_1} + \left( {n - 1} \right)d. After that use the summation property to find the sum of the good numbers. Then, substitute the value and do calculation. The outcome is the desired result.

Complete step-by-step solution:
Given: - A number is a good number when the number is the product of two consecutive odd numbers.
The consecutive odd numbers whose product is the smallest four-digit good number is 31×3331 \times 33.
The consecutive odd numbers whose product is the largest four-digit good number is 99×10199 \times 101.
So, the sum of all four-digit good number is,
31×33+33×35++99×10131 \times 33 + 33 \times 35 + \cdots + 99 \times 101
The general term is,
Tn=[31+2(n1)][33+2(n1)]{T_n} = \left[ {31 + 2\left( {n - 1} \right)} \right]\left[ {33 + 2\left( {n - 1} \right)} \right]
Open the brackets,
Tn=(31+2n2)(33+2n2)\Rightarrow {T_n} = \left( {31 + 2n - 2} \right)\left( {33 + 2n - 2} \right)
Subtract the like terms,
Tn=(29+2n)(31+2n)\Rightarrow {T_n} = \left( {29 + 2n} \right)\left( {31 + 2n} \right)
Now, multiply the terms,
Tn=899+62n+58n+4n2\Rightarrow {T_n} = 899 + 62n + 58n + 4{n^2}
Add the like terms,
Tn=899+120n+4n2\Rightarrow {T_n} = 899 + 120n + 4{n^2}
For number of terms, use the general term of arithmetic progression,
an=a1+(n1)d{a_n} = {a_1} + \left( {n - 1} \right)d
Here, a1=31{a_1} = 31, an=99{a_n} = 99 and d=2d = 2.
Substitute these values in the formula,
99=31+(n1)×2\Rightarrow 99 = 31 + \left( {n - 1} \right) \times 2
Move 31 to the other side and subtract from 99,
2(n1)=68\Rightarrow 2\left( {n - 1} \right) = 68
Divide both side by 2,
n1=34\Rightarrow n - 1 = 34
Move 1 to the other side and add,
n=35\Rightarrow n = 35............…… (1)
So, the sum can be represented as,
Sn=i=1nTi{S_n} = \sum\limits_{i = 1}^n {{T_i}}
Substitute the value of Tn{T_n},
Sn=i=1n(899+120i+i2)\Rightarrow {S_n} = \sum\limits_{i = 1}^n {\left( {899 + 120i + {i^2}} \right)}
Then,
Sn=i=1n899+i=1n120i+i=1n4i2\Rightarrow {S_n} = \sum\limits_{i = 1}^n {899} + \sum\limits_{i = 1}^n {120i} + \sum\limits_{i = 1}^n {4{i^2}}
Use the summation formula to calculate the value,
Sn=899n+120×n(n+1)2+4×n(n+1)(2n+1)6\Rightarrow {S_n} = 899n + 120 \times \dfrac{{n\left( {n + 1} \right)}}{2} + 4 \times \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}
Substitute the value of nn from equation (1),
S35=899×35+120×35(35+1)2+4×35(35+1)(2×35+1)6\Rightarrow {S_{35}} = 899 \times 35 + 120 \times \dfrac{{35\left( {35 + 1} \right)}}{2} + 4 \times \dfrac{{35\left( {35 + 1} \right)\left( {2 \times 35 + 1} \right)}}{6}
Add the terms in the brackets,
S35=899×35+120×35×362+4×35×36×716\Rightarrow {S_{35}} = 899 \times 35 + 120 \times \dfrac{{35 \times 36}}{2} + 4 \times \dfrac{{35 \times 36 \times 71}}{6}
Cancel out the common terms and multiply the terms,
S35=31465+75600+59640\Rightarrow {S_{35}} = 31465 + 75600 + 59640
Add the terms on the right side,
S35=166705\therefore {S_{35}} = 166705

The sum of all 4 digit good numbers is 166705.

Note: A series is defined as the sum of the terms of a sequence. It is denoted by i=1nai\sum\limits_{i = 1}^n {{a_i}} , where ai{a_i} is the ithi^{th} term of the sequence and i is a variable. \sum is a symbol which stands for ‘summation’.
The formulas of sum of n,n2,n3n,{n^2},{n^3} are:
i=1ni=n(n+1)2\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}
i=1ni2=n(n+1)(2n+1)6\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}
i=1ni3=n2(n+1)24\sum\limits_{i = 1}^n {{i^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}