Solveeit Logo

Question

Physics Question on work, energy and power

A nucleus of mass 218 amu in Free State decays to emit an a-particle. Kinetic energy of the a-particle emitted is 6.7 MeV. The recoil energy ( in MeV) of the daughter nucleus is:

A

1

B

0.5

C

0.25

D

0.123

Answer

0.123

Explanation

Solution

The initial momentum of parent nucleus is zero. Hence, the momenta of the emitted a-particle and of the daughter nucleus will be equal (and opposite) to each other (momentum-conservation), i.e., pαpd{{p}_{\alpha }}-{{p}_{d}} Kinetic energy of α\alpha - particle Kα=pα22mα{{K}_{\alpha }}=\frac{p_{\alpha }^{2}}{2m\alpha } = 6.7 MeV (Given) Kinetic energy or recoil energy of daughter nucleus Kd=12pd2md{{K}_{d}}=\frac{1}{2}\frac{p_{d}^{2}}{{{m}_{d}}} \therefore KdKα=(pdpα)mαmdKdKα=mαmd\frac{{{K}_{d}}}{{{K}_{\alpha }}}=\left( \frac{{{p}_{d}}}{{{p}_{\alpha }}} \right)\frac{{{m}_{\alpha }}}{{{m}_{d}}}\Rightarrow \frac{{{K}_{d}}}{{{K}_{\alpha }}}=\frac{{{m}_{\alpha }}}{{{m}_{d}}} (pd=pα)(\because pd=p\alpha ) \therefore Kd=Kα.mαmd{{K}_{d}}={{K}_{\alpha }}.\frac{{{m}_{\alpha }}}{{{m}_{d}}} Now, putting Kα=6.7MeV,{{K}_{\alpha }}=6.7\,\text{MeV,} mα=6.645×1027kg{{m}_{\alpha }}=6.645\times {{10}^{-27}}kg and md=218amu = 218×1.66×1027kg{{m}_{d}}=218\text{amu = 218}\times 1.66\times {{10}^{-27}}kg \therefore Kd=6.7×6.645×1027218×1.66×1027MeV{{K}_{d}}=\frac{6.7\times 6.645\times {{10}^{-27}}}{218\times 1.66\times {{10}^{-27}}}\text{MeV} =0.123MeV=0.123\,\text{MeV} \therefore Recoil energy of daughter nucleus =0.123MeV=0.123\,\text{MeV}