Question
Question: A normal, to parabola \({y^2} = 4ax\),whose inclination is \({30^{\circ}}\), to a parabola cuts it a...
A normal, to parabola y2=4ax,whose inclination is 30∘, to a parabola cuts it again at an angle of
A) tan−1(23)
B) tan−1(32)
C) tan−1(23)
D) tan−1(231)
Solution
Find the slope of tangent and normal by the equation of normal or tangent, and use the formula of angle between the normal and tangent and find the angle between them
For a parabola of equation y2=4ax the tangent equation at p(at12,2at1) is t1y=x+at12 where the value of the slope mT=t11
Complete step by step solution:
We know that the product of the slopes of normal and tangent is -1.
⇒mT×mN=−1 ⇒mN=mT−1 ⇒mN=(t11)−1 ⇒mN=−t1.........(1)
We know that normal is always perpendicular to the tangent at point p.
We know that the equation of tangent at parabola y2=4ax at p(at12,2at1) is t1y=x+at12 here, value of slope mT=t11..........(2)
So, the equation of normal with mN=−t1 and passing at P(at12,2at1) is
So, according to the question normal also cuts the curve at point Q(at22,2at2)
Substitute the value of Q(at22,2at2) in the equation (3)
\Rightarrow \tan \Phi = \dfrac{{{m_N} - {m_T}}}{{1 + {m_N}{m_T}}} \\
\Rightarrow \tan \Phi = \dfrac{{ - {t_1} - \dfrac{1}{{{t_2}}}}}{{1 + \left( {\dfrac{{ - {t_1}}}{{{t_2}}}} \right)}} \\
\Rightarrow \tan \Phi = - \left( {\dfrac{{{t_1}{t_2} + 1}}{{{t_2}}}} \right)\left( {\dfrac{{{t_2}}}{{{t_2} - {t_1}}}} \right) \\
\Rightarrow \tan \Phi = \dfrac{{ - \left( {{t_1}{t_2} + 1} \right)}}{{{t_2} - {t_1}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {{t_1}{t_2} + 1} \right)}}{{{t_1} - {t_2}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{{ - 7}}{3} + 1} \right)}}{{ - \dfrac{1}{{\sqrt 3 }} - \dfrac{7}{{\sqrt 3 }}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{7}{3} - 1} \right)}}{{\left( {\dfrac{8}{{\sqrt 3 }}} \right)}} \\
\Rightarrow \tan \Phi = \dfrac{4}{3} \times \dfrac{{\sqrt 3 }}{8} \\
\Rightarrow \tan \Phi = \dfrac{1}{{2\sqrt 3 }} \\
\Rightarrow \Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right) \\