Solveeit Logo

Question

Question: A normal, to parabola \({y^2} = 4ax\),whose inclination is \({30^{\circ}}\), to a parabola cuts it a...

A normal, to parabola y2=4ax{y^2} = 4ax,whose inclination is 30{30^{\circ}}, to a parabola cuts it again at an angle of
A) tan1(32){\tan ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)
B) tan1(23){\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 3 }}} \right)
C) tan1(23){\tan ^{ - 1}}\left( {2\sqrt 3 } \right)
D) tan1(123){\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right)

Explanation

Solution

Find the slope of tangent and normal by the equation of normal or tangent, and use the formula of angle between the normal and tangent and find the angle between them
For a parabola of equation y2=4ax{y^2} = 4ax the tangent equation at p(at12,2at1)p(a{t_1}^2,2a{t_1}) is t1y=x+at12{t_1}y = x + a{t_1}^2 where the value of the slope mT=1t1{m_T} = \dfrac{1}{{{t_1}}}

Complete step by step solution:
We know that the product of the slopes of normal and tangent is -1.
mT×mN=1 mN=1mT mN=1(1t1) mN=t1.........(1)  \Rightarrow {m_T} \times {m_N} = - 1 \\\ \Rightarrow {m_N} = \dfrac{{ - 1}}{{{m_T}}} \\\ \Rightarrow {m_N} = \dfrac{{ - 1}}{{(\dfrac{1}{{{t_1}}})}} \\\ \Rightarrow {m_N} = - {t_1}.........(1) \\\
We know that normal is always perpendicular to the tangent at point p.

We know that the equation of tangent at parabola y2=4ax{y^2} = 4ax at p(at12,2at1)p(a{t_1}^2, 2a{t_1}) is t1y=x+at12{t_1}y = x + a{t_1}^2 here, value of slope mT=1t1..........(2){m_T} = \dfrac{1}{{{t_1}}}..........\left( 2 \right)
So, the equation of normal with mN=t1{m_N} = - {t_1} and passing at P(at12,2at1)P(a{t_1}^2,2a{t_1}) is

(yy1)=m(xx1) (y2at1)=m(xat12) (y2at1)=t1(xat12) y2at1=t1x+at12 y+t1x=2at1+at13..........(3)  \Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right) \\\ \Rightarrow (y - 2a{t_1}) = m(x - a{t_1}^2) \\\ \Rightarrow (y - 2a{t_1}) = - {t_1}(x - a{t_1}^2) \\\ \Rightarrow y - 2a{t_1} = - {t_1}x + a{t_1}^2 \\\ \Rightarrow y + {t_1}x = 2a{t_1} + a{t_1}^3..........\left( 3 \right) \\\

So, according to the question normal also cuts the curve at point Q(at22,2at2)Q(a{t_2}^2,2a{t_2})
Substitute the value of Q(at22,2at2)Q(a{t_2}^2,2a{t_2}) in the equation (3)

\Rightarrow y + {t_1}x = 2a{t_1} + a{t_1}^{3} \\\ \Rightarrow \left( {2a{t_2}} \right) + {t_1}\left( {a{t_2}^{2}} \right) = 2a{t_1} + a{t_1}^{3} \\\ \Rightarrow 2a\left( {{t_2} - {t_1}} \right) + a{t_1}({t_2}^{2} - {t_1}^{2}) = 0 \\\ \Rightarrow a\left( {{t_2} - {t_1}} \right)\left[ {{t_1}\left( {{t_1} + {t_2}} \right) + 2} \right] = 0 \\\ \Rightarrow {t_1}\left( {{t_1} + {t_2}} \right) + 2 = 0 \\\ \Rightarrow {t_2} = - {t_1} - \dfrac{2}{{{t_1}}}.........\left( 4 \right) \\\ $$ So, we know that $\tan \alpha = - {t_1}$, where $\alpha = {30^{\circ}}$, so $ - {t_1} = \dfrac{1}{{\sqrt 3 }}$ Substitute this value in equation (4), we get $ \Rightarrow {t_2} = \dfrac{{ - \left( {{t_1}^2 + 2} \right)}}{{{t_1}}} \\\ \Rightarrow {t_2} = \dfrac{{ - \left( {\dfrac{1}{3} + 2} \right)}}{{\left( {\dfrac{{ - 1}}{{\sqrt 3 }}} \right)}} \\\ \Rightarrow {t_2} = \dfrac{7}{3} \times \sqrt 3 \\\ \Rightarrow {t_2} = \dfrac{7}{{\sqrt 3 }} \\\ $ Normal cuts the curve at an angle of,

\Rightarrow \tan \Phi = \dfrac{{{m_N} - {m_T}}}{{1 + {m_N}{m_T}}} \\
\Rightarrow \tan \Phi = \dfrac{{ - {t_1} - \dfrac{1}{{{t_2}}}}}{{1 + \left( {\dfrac{{ - {t_1}}}{{{t_2}}}} \right)}} \\
\Rightarrow \tan \Phi = - \left( {\dfrac{{{t_1}{t_2} + 1}}{{{t_2}}}} \right)\left( {\dfrac{{{t_2}}}{{{t_2} - {t_1}}}} \right) \\
\Rightarrow \tan \Phi = \dfrac{{ - \left( {{t_1}{t_2} + 1} \right)}}{{{t_2} - {t_1}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {{t_1}{t_2} + 1} \right)}}{{{t_1} - {t_2}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{{ - 7}}{3} + 1} \right)}}{{ - \dfrac{1}{{\sqrt 3 }} - \dfrac{7}{{\sqrt 3 }}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{7}{3} - 1} \right)}}{{\left( {\dfrac{8}{{\sqrt 3 }}} \right)}} \\
\Rightarrow \tan \Phi = \dfrac{4}{3} \times \dfrac{{\sqrt 3 }}{8} \\
\Rightarrow \tan \Phi = \dfrac{1}{{2\sqrt 3 }} \\
\Rightarrow \Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right) \\

So, the normal, to parabola ${y^2} = 4ax$,whose inclination is ${30^{\circ}}$, to a parabola cuts it again at an angle of $$\Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right)$$ **So, option D is correct.** **Note:** Always take care of the normal and tangent equations, derive the value of ${t_{1\,}}\,and\,{t_2}$, and apply in the formula of angle made by the normal when it cuts the curve. Point P and Q are two different points with different parameters.