Solveeit Logo

Question

Question: A normal conversation involves sound intensities of about 3.0 x10-6 Wm-2 What is the decibel level...

A normal conversation involves sound intensities of about 3.0 x10-6 Wm-2
What is the decibel level for this intensity? What is the intensity of the sound for 100 dB?
A. 65
B. 70
C. 71
D. 24

Explanation

Solution

The threshold intensity of hearing is Io=1012W/m2{I_o} = {10^{ - 12}}W/{m^2}

Formula: β(dB)=10log10(IIo)\beta (dB) = 10{\log _{10}}\left( {\dfrac{I}{{{I_o}}}} \right)

Complete step by step solution:
Given,
Sound intensity (I)=30×106W/m2\left( I \right) = 30\times{10^{ - 6}}W/{m^2}
The threshold intensity of hearing is Io=1012W/m2{I_o} = {10^{ - 12}}W/{m^2}
The sound intensity level β in decibels of a sound having an intensity I in watts per meter squared is defined to be
β(dB)=10log10(IIo)\beta (dB) = 10{\log _{10}}\left( {\dfrac{I}{{{I_o}}}} \right)
∴Sound level=β(dB)=10log10(30×1061012)=10(6.48)=64.8\beta (dB) = 10{\log _{10}}\left( {\dfrac{{30\times{{10}^{ - 6}}}}{{{{10}^{ - 12}}}}} \right) = 10\left( {6.48} \right) = 64.8
Thus, the decibel level = 65 dB (approx.)

Correct answer: A) 65

Note: The decibel (dB) is the preferred unit for measuring sound.