Solveeit Logo

Question

Question: A non-zero vector **a** is parallel to the line of intersection of the plane determined by the vecto...

A non-zero vector a is parallel to the line of intersection of the plane determined by the vectors i, i + j and the plane determined by the vectors ij, i + k. The angle between a and the vector i – 2j + 2k is

A

π4\frac { \pi } { 4 } or3π4\frac { 3 \pi } { 4 }

B

2π4\frac { 2 \pi } { 4 } or 3π4\frac { 3 \pi } { 4 }

C

π2\frac { \pi } { 2 }or 3π2\frac { 3 \pi } { 2 }

D

None of these

Answer

π4\frac { \pi } { 4 } or3π4\frac { 3 \pi } { 4 }

Explanation

Solution

Equation of plane containing i and i + j is

[ri,i,i+j]=0[ r - i , i , i + j ] = 0

⇒ z = 0 ……(i)

Equation of plane containing ij and i + k is

[[r(ij)iji+k]=0\left[ \begin{array} { l l l } { [ \mathbf { r } - ( \mathbf { i } - \mathbf { j } ) } & \mathbf { i } - \mathbf { j } & \mathbf { i } + \mathbf { k } ] = 0 \end{array} \right.

(ri+j)[(ij)×(i+k)]=0( \mathbf { r } - \mathbf { i } + \mathbf { j } ) [ ( \mathbf { i } - \mathbf { j } ) \times ( \mathbf { i } + \mathbf { k } ) ] = 0

x+yz=0x + y - z = 0 …… (ii)

Let .

Since a is parallel to (i) and (ii)

a3=0a _ { 3 } = 0, a1+a2a3=0a _ { 1 } + a _ { 2 } - a _ { 3 } = 0

a1=a2a _ { 1 } = - a _ { 2 }, a3=0a _ { 3 } = 0

Thus a vector in the direction of a is .

If θ is the angle between a and .

Then cosθ=±1(1)+(1)(2)1+11+4+4=±323\cos \theta = \pm \frac { 1 ( 1 ) + ( - 1 ) ( - 2 ) } { \sqrt { 1 + 1 } \sqrt { 1 + 4 + 4 } } = \pm \frac { 3 } { \sqrt { 2 } \cdot 3 }

cosθ=±12\cos \theta = \pm \frac { 1 } { \sqrt { 2 } }

θ=π/4\theta = \pi / 4 or 3π/43 \pi / 4