Solveeit Logo

Question

Question: A non-volatile solute is dissolved in methanol with a solubility of \(20\;{\text{g}}/100\;{\text{mL}...

A non-volatile solute is dissolved in methanol with a solubility of 20  g/100  mL20\;{\text{g}}/100\;{\text{mL}}. Calculate the molar mass of the solute if the vapour pressure of this saturated solution at 20C{20^\circ }{\text{C}} is 83mmHg83{\text{mmHg}}. Given that the density and vapour pressure of methanol are 0.792  g/mL0.792\;{\text{g}}/{\text{mL}} and 95.7mmHg95.7{\text{mmHg}} at 20C{20^\circ }{\text{C}} respectively.

Explanation

Solution

To solve this question, we first need to find the mole fraction of the solvent. Then, we need to find the mass of methanol and consequently we will find its number of moles. Later on, we will find the number of moles of the solvent using our Raoult’s law and then finally we will find the molar mass of the solvent as asked in the question.

Formula Used:
We will use the formula of Raoult’s law to solve this question
Psolution =Xsolvent ×Psolvent {P_{{\text{solution }}}} = {X_{{\text{solvent }}}} \times P_{{\text{solvent }}}^ \circ
Where
vapour pressure of the solution
Xsolvent ={X_{{\text{solvent }}}} = mole fraction of the solvent
Psolvent ={{\text{P}}^ \circ }_{{\text{solvent }}} = vapour pressure of the pure solvent

Complete step-by-step answer: Now, we will rearrange the formula to get the mole fraction
Xsolvent=PsolutionPsolvent=83 torr 95.7 torr =0.8673{X_{solvent}} = \dfrac{{{P_{solution}}}}{{P_{solvent}^ \circ }} = \dfrac{{83{\text{ torr }}}}{{95.7{\text{ torr }}}} = 0.8673
By the definition of mole fraction, we have
0.8673= moles ofsolvent  molesof solute + molesof solvent 0.8673 = \dfrac{{{\text{ moles of}} {\text{solvent }}}}{{{\text{ moles}} {\text{of solute + moles}} {\text{of solvent }}}}
And we already know the solubility which was provided to us in the question =20  g solute 100  mL solution  = \dfrac{{20\;{\text{g solute }}}}{{100\;{\text{mL solution }}}}
Now, we will find the mass of methanol
mass=100mL×0.792g/mL=79.2g{\text{mass}} = 100{\text{mL}} \times 0.792{\text{g/mL}} = 79.2{\text{g}}
We know that the atomic weight of methanol is 32 g32{\text{ g}}
The number of moles of 79.2 g79.2{\text{ g}} methanol is given as
moles = 79.2  g MeOH32g methanol=2.475mols{\text{moles = }}\dfrac{{79.2\;{\text{g MeOH}}}}{{32 {\text{g methanol}}}} = 2.475{\text{mols}}
Now, we will use Raoult’s Law
Psolution =Xsolvent ×Psolvent {P_{{\text{solution }}}} = {X_{{\text{solvent }}}} \times P_{{\text{solvent }}}^ \circ
83mm Hg=95.7mm Hg×Xsolvent83{\text{mm Hg}} = 95.7{\text{mm Hg}} \times {{\text{X}}_{{\text{solvent}}}}
X=0.867= moles solvent  moles solvent + moles solute X = 0.867 = \dfrac{{{\text{ moles solvent }}}}{{{\text{ moles solvent }} + {\text{ moles solute }}}}
0.867=2.475moles(2.475moles+ moles ofsolute )0.867 = \dfrac{{2.475{\text{moles}}}}{{(2.475{\text{moles}} + {\text{ moles of}} {\text{solute }})}}
Moles of solute =0.37 = 0.37 moles and mass dissolved in the solution is 20g.
Now, the molar mass of the solute is given by
20g0.37moles=54.05g mol - 1\dfrac{{20 {\text{g}}}}{{0.37 {\text{moles}}}} = 54.05 {\text{g mo}}{{\text{l}}^{{\text{ - 1}}}}
Hence, the required molar mass is 54.05gmol154.05 g mo{l^{ - 1}}

Note: The law of Raoult states that the partial vapor pressure of a solvent in a solution (or mixture) is equal to or identical to the vapor pressure of the pure solvent multiplied in the solution by its mole fraction.