Solveeit Logo

Question

Question: A non-uniform bar of weight *W* and length L is suspended by two strings of negligible weight as sho...

A non-uniform bar of weight W and length L is suspended by two strings of negligible weight as shown in figure. The angles made by the strings with the vertical are θ1\theta_{1} and θ2\theta_{2} respectively.

The distance d of the centre of gravity of the bar from its left end is

A

L(tanθ1+tanθ2tanθ1)L\left( \frac{\tan\theta_{1} + \tan\theta_{2}}{\tan\theta_{1}} \right)

B

L(tanθ1tanθ1+tanθ2)L\left( \frac{\tan\theta_{1}}{\tan\theta_{1} + \tan\theta_{2}} \right)

C

L(tanθ2tanθ1+tanθ2)L\left( \frac{\tan\theta_{2}}{\tan\theta_{1} + \tan\theta_{2}} \right)

D

L(tanθ1+tanθ2tanθ2)L\left( \frac{\tan\theta_{1} + \tan\theta_{2}}{\tan\theta_{2}} \right)

Answer

L(tanθ1tanθ1+tanθ2)L\left( \frac{\tan\theta_{1}}{\tan\theta_{1} + \tan\theta_{2}} \right)

Explanation

Solution

Let T1T_{1}and T2T_{2}be the tensions in two strings as shown in the figures.

(

For translations equilibrium along the horizontal directions, we get

T1sinθ1=T2sinθ2T_{1}\sin\theta_{1} = T_{2}\sin\theta_{2} ….. (i)

For rotational equilibrium about G

T1cosθ1d+T2cosθ2(Ld)=0- T_{1}\cos\theta_{1}d + T_{2}\cos\theta_{2}(L - d) = 0

T1cosθ1d=T2cosθ2(Ld)T_{1}\cos\theta_{1}d = T_{2}\cos\theta_{2}(L - d)

Dividing equations (i) by (ii), we get

tanθ1d=tanθ2(Ld)orLdd=tanθ2tanθ1\frac{\tan\theta_{1}}{d} = \frac{\tan\theta_{2}}{(L - d)}or\frac{L - d}{d} = \frac{\tan\theta_{2}}{\tan\theta_{1}}

(Ld1)=tanθ2tanθ1Ld=(tanθ2tanθ1+1)\left( \frac{L}{d} - 1 \right) = \frac{\tan\theta_{2}}{\tan\theta_{1}} \Rightarrow \frac{L}{d} = \left( \frac{\tan\theta_{2}}{\tan\theta_{1}} + 1 \right)

Ld=tanθ2+tanθ1tanθ1\frac{L}{d} = \frac{\tan\theta_{2} + \tan\theta_{1}}{\tan\theta_{1}}

d=L(tanθ1tanθ1+tanθ2)d = L\left( \frac{\tan\theta_{1}}{\tan\theta_{1} + \tan\theta_{2}} \right)