Solveeit Logo

Question

Question: A non-conducting ring of radius \(0.5m\) carries a total charge of \(1.11 \times {10^{ - 10}}C\) dis...

A non-conducting ring of radius 0.5m0.5m carries a total charge of 1.11×1010C1.11 \times {10^{ - 10}}C distributed non-uniformly l=l=0(Edl)\int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} (l=0l=0 being centre of ring) in volt is?
(A) +2
(B) -1
(C) -2
(D) Zero

Explanation

Solution

Hint
Here we will be using the formulas, E.dl=dvE.dl = - dv (where, EE= electric field, dldl= small length of non conducting ring and VV= potential ) and l=l=0(dv)=VcentreV(Vcenter\int\limits_{l = \infty }^{l = 0} {(dv) = } {V_{centre}} - {V_\infty }(V_{center} because l=0l=0).

Complete step by step answer
Given, total charge carries by a non-conducting ring=1.11×1010C= 1.11 \times {10^{ - 10}}C.
Also, given the radius of the non-conducting ring R=0.5mR=0.5m.
So, we have to find the value of l=l=0(Edl)\int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} ;
l=l=0(Edl)=l=l=0(dv)E.dl=dv l=l=0(Edl)=VcentreVl=l=0(dv)=VcentreV   \Rightarrow \int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} = \int\limits_{l = \infty }^{l = 0} {(dv)} \\{ \because - E.dl = dv\\} \\\ \Rightarrow \int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} = {V_{centre}} - {V_\infty }\\{ \because \int\limits_{l = \infty }^{l = 0} {(dv) = } {V_{centre}} - {V_\infty }\\} \\\ \\\
Vcentre=9×109(1.11×1010)0.5Vcentre=2V\Rightarrow {V_{centre}} = \dfrac{{9 \times {{10}^9}(1.11 \times {{10}^{ - 10}})}}{{0.5}}{} \Rightarrow {V_{centre}} = 2V
And, V=0({V_\infty } = 0 (\because potential at infinity is 0)0)
So,
l=l=0(Edl)=VcentreV l=l=0(Edl)=2V0V l=l=0(Edl)=2V  \Rightarrow \int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} = {V_{centre}} - {V_\infty } \\\ \Rightarrow \int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} = 2V - 0V \\\ \Rightarrow \int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} = 2V \\\
Therefore, the value of line integral is l=l=0(Edl)=2V\int\limits_{l = \infty }^{l = 0} {( - E \cdot dl)} = 2V.
Option (A) is correct.

Note
The electric potential of a material is the potential difference in potential energy per unit charge between two point charges in an electric field. V=kqrV = k\dfrac{q}{r} {where, k= coulomb constant, q=charge and r= distance between two point charge}.