Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A non-conducting ring of radius 0.5 m carries a total charge of 1.11×1010C1.11 \times 10^{-10}\, \, C distributed non-uniformly on its circumference producing an electric field E everywhere in space. The value of the integral l=l=0E.dl\int\limits^{l=0}_{l=\infty}-E.dl (l = 0 being centre of the ring) in volt is

A

2

B

1

C

-2

D

zero

Answer

2

Explanation

Solution

l=l=0E.dl=l=l=0dV=V\int^{l=0}_{l=\infty}E.dl=\int^{l=0}_{l=\infty} dV=V (Centre) - V (infinity)
but V (infinity) = 0
l=l=0E.dl\therefore \int^{l=0}_{l=\infty}E.dl corresponds to potential at centre of ring.
and V (centre) =14πε0.qR=\frac{1}{4 \pi\varepsilon_0}.\frac{q}{R}
\hspace25mm =\frac{(9 \times10^9)(1.11 \times 10^{-10})}{0.5}= + 2 V