Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A non-conducting ring carries linear charge density λ\lambda. It is rotating with angular speed ω\omega about its axis. The magnetic field at its centre is

A

3μ0λω2π\frac{3\mu_{0} \lambda\omega}{2\, \pi}

B

μ0λω2\frac{ \mu_{0} \lambda \omega}{2 }

C

μ0λωπ\frac{ \mu_{0} \lambda \omega}{ \pi}

D

μ0λω\mu_{0} \lambda \omega

Answer

μ0λω2\frac{ \mu_{0} \lambda \omega}{2 }

Explanation

Solution

Let the radius of the ring is rr. Charge on the ring, q=lλ=2πrλ[l=2πr]q = l \lambda=2 \pi r \lambda [\because l =2 \pi r ] Current due to the rotation of the ring, i=qt=2πrλ2πωi =\frac{ q }{ t }=\frac{2 \pi r \lambda}{\frac{2 \pi}{\omega}} [t=2πω]\left[\because t =\frac{2 \pi}{\omega}\right] =ωλr=\omega \lambda r i=ωλri =\omega \lambda r...(i) [t=2πω]\left[\because t =\frac{2 \pi}{\omega}\right] \therefore Magnetic field at the centre of the ring due to the rotation of the charged ring, B=μ02ir=μ02ωλrrB =\frac{\mu_{0}}{2} \cdot \frac{ i }{ r }=\frac{\mu_{0}}{2} \cdot \frac{\omega \lambda r }{ r } =μ02ωλ=\frac{\mu_{0}}{2} \cdot \omega \lambda [using E (i)]